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PRlUl'ACE 

These Proceedings have been organizE!d with papers given in the order in 
whieh they were presented in the Colloquium. Those papers representing 
contributions to the evening film sessions have been placed following the 
full length papers beeause of the somewhat different format involved. In 
several of these shorter papers are to be found some of the most stimulat
ing presentations of the ColloquiUlll, and the organizers are indeed grateful 
that the authors of these tilm discussions have been willing to participate 
by contributing what have in many cases been examples from unfin:l.shed and 
ongoing researeh. 

The presentations of the Introduetory Session have not been included in 
these Proeeedings. In this Session, chaired by Dr. R. J. Mackin, Jr., 
Dr. W. H. Pickering greeted the participants, Dr. F. E. Goddard explained 
the Research and Advanced Developments Program at JPL, and Dr. Mr. M. Saffren 
gave the Introduction to the Colloquium. 

The Editors 
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INTRODUCTION 

Interest in the science of liquid drops and bubbles extends beyond those 
who work in fundamental fluid dynamics. Workers in meteorology. chemical 
engineering. mechanical engineering, and space processing have an evident 
and very practical concern with this science. Workers in nuclear physics 
and in astrophysics use liquid drops and bubbles as models for phenomena 
in atomic nuclei. and in self-gravitating astronomical systems. 

This Colloquium provided a~ opportunity for workers in these various dis
ciplines to come together. for the first time. to 

- assess the present status of the science of liquid drops and 
bubbles in liquids 

- forecast and help determine the future directions of this 
science 

- determine the value to this science of forthcoming opportunities 
to perform experiments in a weightless environment. 

One aim of the Colloquium was to make evident that what might appear at 
first sight to be a narrow and proscribed science with its best days behind 
it. was none of these things. A reader of these Proceedings can judge for 
himself how successfully this aim was met. An excellent technical summary 
of the Colloquium is provided by Dr. Scriven's paper on page xii. 

A second aim was to help establish the future direction of the science of 
drops and bubbles by looking toward the proper balance of future work in 
theory. computation. laboratory experiment. and experiments in weightless
ness. In retrospect this was too ambitious an aim to be met definitively 
by a single Colloquium; such a balance will probably emerge only after more 
conventions of this Colloquium' have taken place. 

Even so. the presentations do allow some general conclusions to be drawn. 
Almost without exception. theory is treated in linear approximation and 
applies to the equilibrium. or at best stationary state. While computation 
does indeed treat the non-linear dynamics of drops and bubbles it does so 
only when a high degree of symmetry significantly reduces the computational 
complexity. In laboratory experiments the fact that there are usually several 
complicated effects that are taking place simultaneously makes precise analysis 
difficult. Experiments in weightlessness are relatively new. However the 
several papers presented on the Skylab demonstrations hint at the potential 
for remarkable experiments that may allow effects simultaneously present in 
earth-based experiments to be disentangled. 

Here I must confess to the personal prejudice that as this potential is slowly 
realized in the next few years. when what were demonstrations become carefully 
controlled experiments. more and more experimenters will be drawn to experi
ments in weightlessness. and what is learned will greatly stimulate both 
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theory and computation and even result in new experiments on earth. Pre
sently, NASA KC 135 aircraft flying along a ballistic trajectory afford up 
to 25 seconds of weightlessness. Soon to be flown as part of the NASA Space 
Processing Program, sounding rockets will allow experiments times in weight
lessness up to 10 minutes. Eventually. in 1980. the NASA Space Shuttle will 
provide 7 days of weightlessness, and in fact JPL is engaged in a project to 
result in an experiment module being made available on the Shuttle for drop 
dynamics experiments. It is expected that future conventions of this Col
loquium will be under the auspices of this project which is itself part of 
the NASA Physics and Chemistry in Space Experiments Program. 

Interdisciplinary meetings such as this one are notoriously high risk events. 
When successful. as this Colloquium was. the presentations stimulate special
ist and non-specialist alike. provoking exciting discussions at sessions 
that spillover into corridors. and irrepressibly into the coffee and meal
time breaks. Hopefully the presentations as recorded in these Proceedings 
will be just as exciting to read as they were to hear. 

Dr. Melvin M. Saffren 
Chairman. Steering Committee 
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THE MOTION OF BUBBLES AND DROPS IN LIQUIDS 

J. F. Harper 

Department of Mathematics, Victoria University of Wellington, New Zealand 

INTRODUCTION 

The purpose for which I was honoured with an invitation to this 
Colloquium was that of pointing out: some difficulties which have not been 
resolved, especially those which seem to provide opportunities for future 
useful work. It was not primarily that of reviewing well-known theories 
and the experiments which they expl.ain. For a bubble or drop moving through 
a liquid under steady external forces, that has been done first by Levich (1), 
on whose work almost all later theory is based, and more recently in Refs. 2, 
3, 4. Some defects have come to light in Ref. 2, which could usefully be 
mentioned here. Too little attention was paid to numerical work (5,6), to 
recent studies of raindrops (7,8) and to the stagnant-cap theory (see below), 
and there are some errors in the thermodynamic treatment of adsorption: 
temperature changes must be neglected in order to obtain equations (4.4) and 
(4.5) of Ref. 2, and the physical interpretation of r on the following page 
is too simple. A list of minor misprints will be provided on request. 

INSTABILITY 

The first difficulty and opportunity which I wish to mention is this. 
For many years now experimenters have disagreed on the criteria for stability 
of the steady rise of a gas bubble in a pure liquid. Let us define 

(1) 

where g is the acceleration due to gravity, n is the dynamic viscosity 
of the liquid, p its density and a its surface tension. Then some 
experimenters (9,10) find that bubbles of any size will rise stably in any 
liquid with M > 10-8 , while others (3) have observed instability at M > 10-2 

in circumstances quite similar to those of Ref. 10. 

If M < 10-8 • 1.t appears that marginal instability occurs when the Weber 
number 

(2) 

where U is the velocity and d is the equivalent spherical diameter of 
the bubble. The reason is well known: small changes in d then give rise 
to very large changes of shape and hence U, (2,11,12), and so steady-state 
theory predicts that quite different shapes and hence flows can almost co
exist for the same bubble. But what is not well understood is the type of 
motion which occurs when steady flow does become unstable (9,13). Experimental 
bubbles rise in either helices or plane zigzags, and there seems to be no way 
to tell which will occur in any given case. If anything, the present theoret
ical confusion is worse. Spiralling has been shown to persist if the motion 
is suitably started (13), but only if the bubble is also subject to the other 
instability as well, and the type of motion predicted for that case is not 
zigzagging but monotonic wandering away from a vertical path. It is 
unsatisfactory to have been left for seventeen years wondering, but not 
knowing, whether surface-active impurities are some way responsible (20). 
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THE WATER ANOMALY 

Another phenomenon where the same suspicion arises might be called the 
"water anomaly". Provided that W < 0.5, bubbles are very nearly spherical, 
and their graphs of drag coefficient against Reynolds number follow the 
familiar universal curve for solid spheres if their surfaces are dirty, and 
a somewhat lower universal curve (14) if clean. But even the most carefully 
distilled water appears to behave in the same way as filtered (but undistilled) 
water, by following the solid-sphere curve if R = Ud/v < 100, where v is the 
kinematic viscosity, and then gradually approaching the clean-surface one 
until R = 500, by which time distortion from a spherical shape has become 
important. If that is a real effect, (and I am indebted to Dr D W Moore 
for pointing out to me how strong the evidence in Ref. 14 is), it must mean 
that all so-called "clean" water has the same non-zero amount of the same 
surface-active impurity dissolved in it. The mystery is apparently deepened 
by the fact that a 13% alcohol solution in water behaves like a normal pure 
liquid (14). 

The only obvious suggestion to make is that at least one of the natural 
chemical components in water exposed to the air is surface-active enough and 
abundant enough to act as the "impurity". Because a free water surface is 
always charged, and the electrical conductivity of water is notoriously 
about 10 times as high in the presence of ordinary air as when the carbon 
dioxide is carefully removed, we are led to consider water as a roughly 10-6 

molar solution of H
3

O+ and HC0
3
-. The diffuse (Gouy-Chapman) double layer 

at the surface is then about 300 nm thick (15), and we can estimate the 
effect on the surface tension in order-of-magnitude terms as follows. Suppose 
that we take the potential difference across the double layer to be O.lV, 
and then the energy in a capacitor with plates 300 nm apart and a water 
dielectric is about 10-5 J m-2 , which corresponds to a surface-tension differ
ence of 10-2 mN m- 1 between H

2
0 and the ionic solution. 

That does not seem to be enough of a surface pressure to interfere with 
a bubble 1 mm in diameter rising at 0.2 m s-1 , but there is a magnifying 
mechanism for it. A rising bubble with a free surface is so efficient at 
sweeping any small amount of adsorbed impurity round to its rear stagnation 
pOint (16) that whenever the motion is visibly retarded, the surface must be 
totally clogged around that point, though it might well be effectively free 
and unpolluted over the forward part of the bubble. This is, of course, the 
"stagnant-cap" hypothesis (17). Now convective diffusion onto a freely 
moving surface is very much more efficient than off a surface at rest, and so 
the surfactant concentration at the rear stagnation point of a rising bubble 
will be many times its value at a stationary fluid surface in equilibrium. 
Detailed calculations are so far available only for a very small stagnant cap 
on a bubble rising at low Reynolds number (18), but magnification factors of 
10 or 20 for the surface pressure seem entirely reasonable. That would explain 
how Davis and Acrivos (17) found it a good approximation to use in their 
theory the maximum possible surface pressure of which a given surfactant was 
capable, even if the bubble was rising in quite a dilute solution, and it 
would also bring up the electrical surface pressure for water to 0.1 or 
.0.2 mN m- 1 at a rear stagnation point. Our only guide to the effect on a 
bubble is Moore's theorem (16) for the drag coefficient, i.e. 

1 

C - 48 {I - __ 1 __ I ~n(~)d~} (3) 
D R 2Un 

-1 

where ~ is the cosine of the polar angle e measured from the front 
stagnation point. This theorem holds when the flow is slightly perturbed 
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from irrotational, which is not accurately true here, but it seems that the 
surface pressure could perhaps suff:l.ce to explain the observed effects. 

Obviously there is plenty of scope here for future work, both experimental 
on bubbles rising :Ln water with the carbon dioxide removed (and with the 
conductivity simultaneously ·measured to check on it), and theoretical for a 
stagnant cap on a sphere at high Reynolds numbers, somewhat resembling Leal's 
(19) calculation for an analogous two-dimensional flow. The numerical work 
will not be easy: there are more independent dimensionless parameters than 
one would like, and even small Reynolds numbers gave some trouble (17). 

LOW PECLET-NUMBER FLOW 

Let us turn to a problem where the theoretical difficulties are quite 
minor. If a bubble or drop moves in an ideal surfactant solution at low 
P~clet number P Q tJd/D (and therefore low Reynolds number because v » D 
for all ordinary stlrfactants in all ordinary liquids), the motion and the 
distribution of surfactant are remarkably easy to find (2), even when diff
usion through both bulk phases and along the surface is allowed for simult
aneously. It would therefore seem to be a good system in which to try 
working out the effects of more complicated phYSical chemistry (such as 
the surfactant approaching the critical micelle concentration, or undergoing 
chemical reactions. possibly slowly enough to hold up its diffusive transfer), 
but for two objections. Low P~clet numbers are unusual in bubbles big enough 
to be visible with the naked eye, and even if there were some good means of 
observing tiny bubbles rising, the liquid would have to be extraordinarily 
pure for them to a(:t as anything but small rigid spheres. The second 
difficulty is a ch~lllenge to a surface chemist, but the first could only be 
overcome in space. That is because U on earth is always between gd2 /1Sv 
and gd2/12v (the Stokes and Hadamard-Rybczynski values), and so 

(4) 

To get d up to 0.1 mm would require g to be reduced to a thousandth of 
the usual 9.S m s-2 , and obviously greater reductions would allow for larger 
bubbles. 

One reason why this Colloquium was called was "to determine the value 
to this science of forthcoming opportunities to perform experiments in a 
weightless environment". There seems to be no point in suggesting that any 
experiment be done in space if it is feasible on earth, but we seem to have 
here an experiment which is impossible on earth and which might tell us some
thing important about surface chemistry in very dilute solutions. I shall 
be interested to learn whether the "rise" of small bubbles in a very highly 
purified liquid constitutes an experiment feasible in space. 
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THE PENDANT DROP: THEORY AND EXPERIMENT 

by A. A. Kovitz 

Department of Mechanical Engineering and Astronautical Sciences 
Northwestern University, Evanston, Illinois 60201 

ABSTRACT 

The spectrum of static, axisymmetric pendant drop shapes is studied, both 
experimentally and theoretically. Calculations, both numerical and analytical, 
based on the Young-Laplace equation, y:Leld possible pendant drop shapes as a 
one-parameter (a non-dimensionalized pressure jump at the drop apex) family 
of curves. These results are interpreted in terms of varying contact circle 
radius and hydrostatic pressure in the contact circ~e cross-section, for any 
fixed value of interfacial tension and density difference across the inter
face. Experiments were conducted in which the above noted parameters were 
varied, and their relationship to the calculations evaluated. 

The calculated family of solution curves is bounded by two envelopes; one 
gives the high pressure limit for exist;ence of static drops; the other gives 
the low pressure limit. For given interfacial properties, and fixed contact 
'circle radius, multiple solutions exist between these two pressure extremes. 

Experiment shows that two pendant drops are observable for a given con
tact circle radius and pressure; one is statically stable; the other is 
statically metastable. With increasing pressure these two shapes approach' 
each other; at a certain maximum pressure they coalesce into ~ pendant drop 
shape; any higher pressure results in dripping. It was also verified that 
drops suddenly break off when the low pressure limit is approached. 

Static stability conclusions have recently been reported by a number of 
authors using energy methods; the direct experimental verification herein 
reported (except for some unpublished results to be noted), and the ana
lytical results for h:Lgh and low pressure drops appear to be new. 

INTRODUCTION 

A pendant drop ill formed when the denser of two contiguous fluids is 
suspended below a closed, common curve of contact between the fluids and a 
fixed solid; implicit in this descripti.on is the supposition that the con
figuration is in static equilibrium under the influence of gravitational and 
surface tension forces. The axisymmetriC case, which arises when the con
tact curve is a circle whose plane is perpendicular to the gravitational 
force, has received much attention both by early and recent investigators. 
The early work focused mainly on determination of the pendant drop shape, 
through solution of the governing Young-Laplace equation, and its use in 
measurement of surface tension. The most recent work is concerned with the 
static stability of pendant drops, primarily through application of varia
tional techniques 011 the energy of the system. 

This paper is abo concerned with the static stability of pendant drops. 
Conclusions will be deduced from the family of drop shapes determined 

" 
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numerically and analytically from the Young-Laplace equation rather than an 
energy approach. Certain results, for essentially low and high pressure in 
the contact circle cross-section, will be obtained analytically. Finally, 
these static stability conclusions will be shown to compare well with 
experiment. 

Although the stability limits to be cited here have also been recognized 
in recent work using energy methods, they appear in a more compact and con
cise way through the interpretation of boundary envelopes to the pendant drop 
solution curves. Experiments focused on verifying these static stability 
limits, and the observation of certain multiple solutions, do not appear to 
be in the literature. However, many experiments on the breakaway volumes of 
pendant drops are reported, with the object of obtaining empirical equations 
useful in the drop-weight method for surface tension; Padday and Pitt (in a 
1973 paper referred to later) give many references for these experiments. 

No paper on pendant drops can fail to note the fundamental work of Young 
(1) and Laplace (2). These researchers established the general governing 
equation for interfacial surfaces and obtained solutions for limiting cases. 
Laplace (2), in particular, already recognized the ability of the interfacial 
equation to yield iftformation on static stability. 

The first comprehensive, and still useful, numerical treatment of the 
Young-Laplace equation is due to Bashforth and Adams (3). They published 
tables for drop shapes as a function of a "shape parameter", which is related 
to the apex pressure parameter to be used here. Lohnstein (4) obtained ap
proximate results for the limiting volume of drops as a function of contact 
circle radius. These results were used in conjunction with a method for 
finding more accurate values of surface tension. Bakker (5) has summarized 
results up to 1928 for numerical computation of drop shapes and their prac
tical application. More recently, Padday (6) and Princen (7) have given 
extensive and excellent reviews of the experimental and mathematical state 
of the art, up to 1968, for determination of interfacial shapes and surface 
tension. 

Much current work on pendant drops concerns their static stability. 
Padday and Pitt (8) present a comprehensive study of the static stability of 
three types of axisymmetric interfaces, including pendant drops. Their re
sults are based on an application of the energy method, using the extensive 
numerical results of Padday (9) to evaluate the first and second variations 
of the energy integral. Padday and Pitt (8) also note the appearance of 
bounding envelopes, and interpret them with respect to static stability. 
Their paper carefully classifies many types of stability phenomena, with 
detailed descriptions of meniscal behavior under a variety of constraints. 
Pitts (10) avoids the numerical approach of Ref. (8); in this way he is able 
to include more general perturbations in pendant drop shape; it is not clear 
that his stability boundaries differ from those of Padday and Pitt (8). 

Related theoretical studies by Gillette and Dyson (11,12,13) consider 
the stability of liquid bridges, and disjoint capillary system, based on 
variational principles. Orr, Scriven, and Rivas (14) report on new results 
for liquid bridges (or pendular rings). 

, , ).~, 
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FORMULATION OF PROBLEM 

Figure 1 is a schematic of the pendant drop with dimensional coordinate 
system. The basic Young-Laplace equation (see, for example, Refs. 6,7) re
lating the pressure difference across an interface to the interfacial curva
ture and interfacial tension is 

where p+ and p_ are the local hydro
static pressures on either side of the 
interface, Rl and R2 are the local 
principal radii of curvature of the 
interface, and a is the interfacial 
tension. Let Pc+ and Pc- be the 
pressures in the plane of the contact 
circle, inside and outside the drop, 
respectively; if p+ and p. are the 
corresponding fluid densities (with 
P+ > p_), and g the gravitational 
force per unit mass in the negative 
f direction, then ' 

IrP '" Pc+ - Pc- + pgfa - pgf (2) 

where p = p+ - p_, fa is the dis
tance from the apex of the drop to its 
contact circle, and :E is the distance 
from the apex to the plane where 6p is 
measured. Introduce the meniscus con·· 
stant (a length) 

k = Ja/pg 

and the non-dimensional lengths x. r/k y = f/k 

contact circle (tip) 
ot r =0 

~~~-------------------~r 

Fig. 1. Schematic of pendant drop 
showing dimensional coordi
nate system. 

(3) 

these are identical to the variables used, among others, by Huh and Scriven 
(15), and Kovitz (16). It is convenient to introduce the non-dimensional 
pressure difference across the interface 

-w 15 lrP/pgk = G - y 

where 

G :; (Pc+ - p + pgf )/pgk c- a 

is the non-dimensionalized pressure difference across the interface at the 
drop apex. It may bEl verified that 

G '" 2k/b '" 2/'P 1/2 

(4) 

(5) 
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where b is the single radius of curvature at the drop apex, and S is the 
Bashforth and Adams "shape factor" used by many authors; see, for example, 
Refs. (3,6,7,8,9). Only positive values of G will be considered in this 
study; it will be seen (on Fig. 2) that this restricts the discussion to 
drops with apex below the contact circle plane. 

The non-dimensionalized pressure difference at the contact circle cross
section is 

-w = G - f /k = (p - p ) / pgk a a c+ c- (6) 

In Ref. 8 the "hydrostatic pressure at the tip" is denoted by pgZt = Pc+ - Pc-; 
since pressure varies linearly with vertical distance, Zt/k is used there 
instead of y, as the dependent variable. 

If Rl and R2 are written in terms of x, y = G + w, and ~ (see Fig. 1) for 
the axisymmetric case,Eq. (1) becomes a pair of first-order ordinary differ
ential equations for w(~) and x(~); 

w' -sincp/(w+sin~/x) 

x' '" -cos~/ (w+ si~/x) , 

with boundary conditions 

w(O) I: -G x(O) I: 0 

Development of Eqs. (7) is outlined in Refs. (15,16) with additional dis
cussions in Refs. (2,6,7,10). 

(7) 

Equations (7) may be expressed as a single second-order ordinary differ
ential equation for w(x); 

wIt I: =F W(1+w.2)3/2 _ W'(1+W. 2)/ x 

where ± is to be used when w' ~ 0, respectively. 

INTERPRETATION OF NUMERICAL SOLUTIONS 

(8) 

A standard Runge-Kutta finite difference technique was found adequate to 
solve the system, Eqs. (7). Further discussion on integration of the Young
Laplace equation may be found in the appendix to Ref: 10. The initial values 
w(~l)' x(CP1)' for 0 < ~l « 1, were obtained by series solution of Eqs. (7): 

-1 2 ( 4) w(~l) = -G + G ~1 + 0 ~1 
(9) 

With CPl and G chosen, the numerical procedure yielded w(cp:G), x(~:G); with 
~l I: 10-6 the numerical results matched Eqs. (9) to five significant figures 
over a substantial range of cP > CPl' This insured that the solution was 

, . .' .. :" 
~, -': 
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independent of ~, as long as G ~ .25. Solutions for small and large G will 
be discussed in a later section. 

Results of the numerical solutions of Eqs. (7) are shown in Fig. 2. 
Each curve, w(x;G). starts at w(O;G) = -G; shown in the figure are curves for 
integer values of 1. ~ G ~ 7, as-well-as G = 3.5, 2.5, 1.5, .50, .25, and a 
segment of G = 2,75. The most striking feature of these integral curves is 
the appearance of envelopes which bound their undulating portions. Padday 
and Pitt (8) also notice one of these envelopes (see their Fig. 14), corre
sponding to A1B1C1E: l on Fig. 2. Comparison with their Fig. 14 sho~~s sensible 
agreement with Fig. 2, with the possible exception of the neighborhood of El ; 
it will be seen that the location of. the envelope terminus EI in Fig. 2 is 
determined by an analytical solution of Eqs. (7) for small values ()f G, 
whereas Padday and Pitt (8) used a "fairing in" technique to obtain their 
envelope. Although Padday and Pitt (8) comment on the physical consequences 
(to be discussed below) implied by the envelope A2B2C2E2 in Fig. 2. they do 
not explicitly recognize its existence in the x,w-plane. 

The reader :I.s directed to Ref. 8 for an alternate and detailec1 descrip
tion of the static stability phenomena to be described below. Padc1ay and 
Pitt (8) identify pendant drops with tip coordinates on the AlBlCIE I envelope 
as exhibiting "pressure-radius limited stability"; those with tip coordinates 
on the A2B2C.,E2 envelope demonstrate "volume-radius limited stabil:l.ty". 
Pressure-radius limited drops become unstable with volume perturbation (for 
fixed tip pressure) at their stability limit; volume-radius limited drops 
become unstable with pressure perturbation (for fixed volume) at their 
stability limit. Most of the conclusions enunciated in Ref. 8 are in agree
ment with those to be discussed herein. However, there is a difference 
associated with the ~B2CzE2 envelope which will be noted when it :I.s en
countered. 

The physical implications of Fig. 2 may be understood as follows: for 
a given value of the meniscus constant k = Ja/pg, and a given contact circle 
radius "a", the abscissa 

X I!I X - a/k a 

is determined; for a given pressure difference, Pc+ - Pc-' in the contact 
circle cross-section 

w == w .. - (p - p ) / pgk a c+ c-

(10) 

(11) 

is determined from Eq. (6). This specifies a point xa ' wa on Fig. 2 through 
which may pass curves G .. constant> 0; each of these curves (each with a 
different value of G), starting at w(O;G) = -G, and terminating at xa ' wa ' 
represents a static pendant drop configuration such that 

y(x) = G + w(x) (12) 

It remains to discuss which of these curves represent stable drops (i.e., 
physically observable ones), and to note that for a given xa there are values 
of wa such that no values of G exist. or at most only one. Consider, for 
example, xa = .34, wa = -3.86; the two smallest values of G for this point 
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G=6.0 

Xa= .34 
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14.65 

-.35 :3.30 
.10 

:B1tJ' 

1 I 

-5. I~: G = 1.90 
I I 
, Xa= 1.18 

6 : I ----
- ., I 

I I 

-7. 

Fig. 2. Family of pendant drop profiles, and bounding envelopes, for the 
apex pressure parameter G = -w(O;G). El and E2 (at x equal to the 
first two roots of Jo(x) = 0) are the termini of the high-pressure 
envelope (AlBlClE l ), and low-pressure envelope (A2B2C2E~), respec
tively. Envelope approximations aE l and ~E2 are given 1n Eq. (24); 
AlBlCl is given by Eq. (20)0 The data points (~,V) correspond to 
tne experimental data summarized in Table I. The sequence of pro
files, for xa = .34 and 1.18, respectively, show drop shapes from 
max~ to minimum tip pressure, with associated values of wa and Go 
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are G = 4.00, 4.65. The drops corresponding to these specifications are shown 
on Fig. 2 as second from the left along the upper row of individually drawn 
pendant drops. Typi.cally, the drop with the smallest G value (G'" tf.O in this 
case) does not touch the AIBIClE l envelope, while that with the next: larger G 
value (G = 4.65 in this case) is tangent to this "outer" envelope. 

With xa = .34 the upper row of pendant drop shapes in Fig. 2 reflect the 
range of w values for which at least two values of G exist; at w =. -5.70, 
xa = .34 i~tersects the outer envelope; at this point only one value, G = 6.0, 
exists; for IWal > 5.70 no solutions exist. At the other extreme, xa = .34 
intersects the A2B2C2E2 (inner) envelope at wa = -1.45 with G = 1.15, 3.30; 
for 0 < IWal < 1.45 only one solution exists. 

The second row of drop shapes in Fig. 2 illustrates, for xa = 1..18, the 
same features of the solution. In this case the inner envelope limit occurs 
for wa '" .10 > 0, corresponding to pc+ - pc- < 0, for which only one drop 
(G ... 3.0) exists. 

The physical implications of the above discussion for a given x (tip 
~ti~)~: a 

(a) at least two pendant drop shapes exist for each value of -wa (tip 
pressure) within a certain range of permissible values; experiment 
will verify that the drop corresponding to the smallest value of G 
(smallest pressure differenl:e at the drop apex), for each permissi
ble value of wa ' is stable (will occur naturally); experiment will 
also verify that its "conjugate" drop (that for the next largest 
value of G, but the same xa' wa) is metastable (can be observed 
experimentally, but under allY perturbation it either contracts to 
the stable drop or elongates continuously until sudden break-off 
occurs); 

(b) if -wa is greater than a critical value determined by intersection 
with the outer envelope no stable drop exists (dripping occurs); 

(c) if -wa is less than another critical value determined by inter
section with the inner envelope, the metastable drop does not 
exist; experiment will verify that this prediction corresponds to 
the sudden break-off of a quasistatically elongating (metastable) 
drop, with no constraints on volume or contact angle, whose 
sequence o:E shapes (for a g1.ven xa ) is closely approximated by the 
two rows o:E drops (solid curves) shown in Fig. 2. 

It may be shown that, in general, a finite number (greater than 2) of G 
values exist for a given xa ' for each wa within the permissible range deline
ated by the envelopes. However, all drop profiles for G greater than the two 
smallest values touch both envelopes before reaching xa ' w. These drops 
were never observable with the apparatus and experimental ~rocedure to be sub
sequently described. 

Finally, it should be noticed that 

(a) stable drops exist for tip radii El < xa < E2 only if the l:ip 
pressure -Wa < 0; 
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(b) ~ stable drops exist for xa > E2 ; this upper bound does not appear 
to be recognized in Ref. 8; therefore the "bath tap profile" shown 
there as Fig. 9 is questionable to this writer. 

Both El and E2 are determined analytically in a later section. 

ASYMPTOTIC SOLUTIONS FOR LARGE AND SMALL G 

For large G (meaning large interfacial pressure differences at the drop 
apex) the apex curvature is large; this causes the linear pressure variation 
over the drop interior due to gravity to be small compared to the mean 

'pressure within the drop; see Fig. 2. Thus gravity effects are small com
pared to the influence of interfacial tension; the drop shape is closely 
approximated by a spherical segment. 

If G is small (meaning small interfacial pressure differences at the 
drop apex) the apex curvature is small; in this case the slope of the inter
facial surface is everywhere small so that the drop shape is closely approxi
mated by a linearized version of Eqs. (7). 

Details of the solution to Eqs. (7) for large and small G will be given 
elsewhere. Both solutions are attainable as series expansions in terms of 
negative and positive powers of G for large and small G, respectively. 
These developments are in the spirit of the analysis given by Concus (17) 
for menisci internal to circular cylinders, and the solutions for rod-in
free-surface menisci in Ref. (16). 

For large G: 

-1 -3 -5 
w(~;G) = ~G + G w1(~) + G w3(~) + O(G ) 

-1 -3 -5 
x(~;G) = G x1(~) + G x3(~) + O(G ) 

where 

2 sincp 

W1 (~) = 2 (l-cos~) 

3 
w3(~) = (8/3)(1/2-3cos~/2 + cos ~-tnE(l + cos~)/2J} 

For small G: 

w(x;G) ~ -GJ (x) 
o 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

_G
3 

(TT/4){ [J 0 (x) + x -1 J 1 (x) J L1 (x) - LYo (x) + x·
1
Y1 (x) J L2(X)} + O(G

5
). (19) 

· .', ." ... '.::;-..... . 
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where J (x), Yi(x) are Bessel functions of the first and second kind, 
respectively, and 

rX 3 L1 (x) ii I zYl(z)Jl(z)dz 
J 

0 

L2(x) =r 4 
zJl(z)dz 

0 

The solution for large G exhi.bits the expected near spherical shape since 

~ -1 
w = -G + 2G (l-cos~) 

- -1 x .. 2G sin~ 

-1 are parametric equations for a circle of radius 2G with center at (x = 0, 
w = -G + 2G-). However, the representation given by Eqs. (13-18) does not 
admit an inflection point; therefore, it can describe the drop shape in the 
neighborhood of the outer envelope (AIB1C l in Fig. 2), but cannot be used to 
give the drop shape in the neighborhood of the inner envelope (A2B2 in Fig. 2). 

The small G solution has as its leading term the solution to a linear
ized form of Eq. (8), namely, 

w(x) .. -GJ (x) 
o 

This solution waEI obtained by Rayleigh (18) for the case of nearly flat 
interfaces. 

ENVELOPES OF SOLUTIONS 

The large and small G pendant drop solutions, given in the previous 
section, may be used to obtain envelope curves. Analysis proceeds in the 
same way as in Ref. 16. The basic point is that an envelope curve is tan
gent to all members of the single parameter family of curves; there may be 
more than one envelope, which is the present case. 

For large G, Eqs. (13-18) may be shown to require 

2 
G (cp) = Xl (~)wi (~) Ixi (cp) - wl (~) - x) (~) Ixi (~) (20) 

~ the envelope. Eq. (20), together with Eqs. (13-18) yield the envelope 
curve. This curve is shown as the dotted contour A1B1C l on Fig. 2. Within 
the scale of Fig. 2 one sees that the agreement with a possible "faired-in" 
envelope is excellent up to the neighborhood of point C

l
• 

For sufficiently large G, ~ on the envelope approaches n/2. There an 
approximate solution for the outer envelope may be written as 

w(x) - -2/x (21) 

in the large G limit. This approx:lmation can be used with no more than 5% 
error for G ~ 8.0; with G ~ 15.0 the error is within 0.1%. 
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The envelope for small G is obtained from Eq. (19). Define a function 

f(x,w,G) = w + GJ (x) + G3F(X) (22) 
o 

where F(x) is the coefficient of G3 in Eq. (19). On the envelope 

of(x,w,G)/oG = 0 (23) 

Eq. (23) yields 

G
2

(x) = -J (x)/3F(x) 
.0 

on the envelope, for sufficiently small G; i.e., x must be such that G is 
B;a1I: Eqs. (19) and (23) allow the determination of the envelope curve 
w(x) for small G. 

(24) 

Numerical evaluation of Eq. (24) shows that in the neighborhood of the 
first zero of Jo(x), i.~., for x ~ Xo = 2.4048 ••• , 

J (x) ~ 0 
o 

F(x) < 0 

therefore, real values of G exist for x ~ xo. In the region Xo ~ x ~ xl' 
where xl = 5.5201 ••• is the second zero of Jo(x), J (x) ~ 0, and F(x) passes 
through zero and becomes positive., Therefore there ~s a second region in 
the neighborhood of x ~ xl where real values of G again exist. These two 
branches of Eq. (24) are plotted in Fig. 2 as the curves aEl and ~E2' 
respectively. It may be verified that these envelope curves possess zero 
slopes from the left and right at El and E2, respectively. The numerical 
curves for small G appear to agree very well with the analytical envelope 
segments aEl and ~E2. aE l is the small G portion of the outer envelope 
(A1B1Cl); ~E2 is the small G portion of the inner envelope (AZBZCZ). 

These results indicate that for tip radii such that El < xa < EZ no 
stable pendant drops can exist for positive tip pressures. Furthermore, when 
xa > EZ stable drops cannot exist, even when the tip pressure is negative. 
The xa < El bound was recognized explicitly by Pitts (10). 

Any successful analysis for the inner envelope when G is large requires 
asymptotic drop solutions that admit inflection points. Only a limiting 
solution has been obtained using a crude integral approximation to the solu
tion of Eqs. (7) in which an integrand is expressed through assuming the shape 
to be spherical. This yields for the x-coordinate of the inner envelope 
(with ip - Tl/Z) 

-3 x,... (16/3)G 

To this approximation the w-coordinate is simply w- -G. 

(Z5) 

This tentative result for the inner envelope in the limit of infinite 
G allows one to understand why pendant drops formed at very small tip radii 
have relatively large drop radii as they "drip off". The drop radius is 
approximated by the x-coordinate of the outer envelope, x - -2/w_ 2/G (from 
Eq. (Zl»; the tip radius is given by the x-coordinate of the inner envelope, 
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Eq. (25). 2 Therefore, drop radius/tip radius - 3G /8, or 

drop radius - [(3k2/2).(tip radius) Jl / 3 
(26) 

as tip radius ~ 0, G ~ =. It would appear to be difficult to produce very 
small pendant drops simply by dripping from the end of a small Up; this 
is confirmed by experience. 

EXPERIMENTAL PROCEDURE AND DATA REDUCTION 

Experiments were conducted to test the validity of the theroetical con
clusions. Pendant drops of a .1 normal HCl-H20 solution in air were pro
duced, photographed, and their relevant properties measured. The acidic 
aqueous solution (19) was used to minimize well-known surface aging effects 
(20), which may result in time dependent values of surface tension for an 
interval (order of minutes) after formation of a new surface. Direct 
observation of the stationary appearance of a newly formed drop (at least 
for the period of time necessary to take data) confirmed that surface aging 
did not introduce appreciable errors. 

A schematic of the experi
mental apparatus is shown in Fig. 
3; the caption relates the 
identifying letters to the sys
tem elements. All tubing is 
filled with the common liquid 
constituting the reservoirs and 
pendant drop. 

Steps in a typical data 
taking event are as follows: 

(a) with all stopcocks 
closed except lS' the vertical 
articulation is adjusted so that 
surfaces band g communicate at a 
common level; the tip e (without 
drop) is lowered to touch g; this 
establishes the zero reading on 
the dial indicator. f at which e 
(the contact circle location with 
known radius a) is at the same 
level as the "infinite reser
voir b; 

(b) the stopcocks are 
adjusted so that reservoir b and/ 
or the micro-syringe c communi
cates, at the operator's dis
cretion, with the tip; 

f 

I 

Fig. 3. Schematic of experimental 
apparatus: (a) filling reser
voir; (b) tip-pressure reser
voir; (c) micro-syringe device; 
(d) vertically articulated tip 
holder; (e) interchangeable tip; 
(f) dial indicator; (g) ver
tically articulated tip-level 
reservoir; (h) flexi.ble 
constant-volume tubing; (k) 
pendant drop; (tl,2,3,4,5) 
stop-cocks. 
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(c) the vertically articulated tip is moved relative to the reservoir 
b, and the micro-syringe is manipulated to produce a desired pendant drop; 

(d) once a pendant drop has been produced which is stationary upon 
communicating e with b, the tip pressure 8F = (p - p _)/pg is read 
directly from the dial indicator (with .001 inchcdivisrons); 

(e) the stationary pendant drop is photographed. 

To produce a drop at maximum 8F, for a given tip radius a, requires the 
gradual lowering of e until it is no longer possible to observe a stationary 
drop when b communicates with e. Phenomena associated with drop development 
and break-off will be described in the next section; at this point assume 
that ~Pmax can be determined. 

Before any comparisons between theory and experiment can be attempted 
it is necessary to know the meniscus constant k E! .ja/ pg. This. length may be 
determined from knowledge of 8Fma and the contact circle radius, a. First, 
recognize that the contact point ~xa'w ) corresponding to maximum contact 
circle pressure must lie on the A1B1Clf l envelope in Fig. 2; second, observe 
that the ratio w/x = (pressure difference across the interface at f)/(radial 
distance of interface from axis of symmetry) must equal ~/a for w ~ wa and 
x = xa' Thus, the locus of possible contact circle points in the x,w-plane 
for which ~ and a are known must be on the straight line 

w/x = -~/a (27) 

When ~ = 8Fmax • the intersection of the straight line w/x = -~ /a with 
the envelope AlB1C1E l gives the contact point for maximum pressu~:xxa,wal' 
say. Once xa 1S so determined, 

(28) 

A test of the accuracy of the method is to compare the experimental 
drop shape at ~max with that given by the numerical results. This prescrip
tion for finding k may be compared with that used in Ref. 16 for obtaining k 
in the case of rod-in-free-surface menisci. 

The minimum pressure contact point, for the same xa ' should correspond 
to the intersection of x = xa with the envelope A2B2C2E2 of Fig. 2. This 
would determine xa ' wae ' say, so that 

~min,e = -pgkwae (29) 

To produce a drop at minimum ~ requires the gradual raising of tip e 
until a static-elongated drop can no longer be produced by manipulation of 
micro-syringe c and communication of e with b; in principal, this experi
mentally determined minimum pressure, as read by the dial indicator, should 
equal ~ i as given by Eq. (29). 

m n,e 

An alternate procedure for determining ~min e is to close stopcock £3 
(with £4 open, of course), and manipulate micro-syringe c to produce a 
sequence of static drops of increaSing length. At a certain maximum length 
the drop suddenly breaks off. Since the system is static before break-off, 
the pressure in the contact circle cross-section just prior to break-off 
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should equal that predicted by Eq. (29). This may be tested by measuring 
the length fa2 of the drop just before break-off; then 

(30) 

With xa the same as that for 6Pmax ' numerical procedures, or Fig. 2, may be 
used to find the value of G = G2 such that 

Ya2 ,= w(xa ;G2) - w(0;G2) 

then 

If wa2 = wae then l:he drop broke off at the theoretical minimum pressure; 
in general, experiment has shown that wa2 < wae' 

(31) 

For 6P such that wal < wa < wa2 • for a fixed x = xa ' there are two 
observable pendant drops. The first with fa = fast say. corresponding to 
the smallest value of G at xa ' wa is stable to small disturbances; it is 
directly observable (with llP impressed upon the tip by communication between 
band e, Fig. 3). The second drop with fa = fam' say, corresponds to the 
next largest G value; it is metastable, and must be produced by suc:cessive 
manipulation of c: ~lnd .1.3 (with .1.2 and .1.4 open. and tip position fixed). The 
observer notes that if f < fam' with .1.3 closed, then f .. fas after .1.3 is 
opened; on-the-other-hana. if fa > fam for l,3 closed, t~en fa grows until 
the drop breaks off. When fa ... fam the drop length remains constant upon 
opening l,3' This behavior is readily observed after some practice; a photo
graph of this stati.onary drop is obtained and used to compare its shape with 
that predicted by the appropriate G curve in Fig. 2. 

Drops corresponding to larger values of G than the above noted smallest 
pair. for the same (xa.wa). were not observed. 

EXPERIMENTAL RESULTS AND DROP BEHAVIOR 

Photographs of pendant drop pairs, for a fixed xa ' and wal < w~ < wa2 
are shown in Fig. 4. In that case the tip radius was - 1 mm, using distilled 
water in air. Passing from Fig. 4a to 4f corresponds to 6P decreasing from 
slightly less than /::,.Pm to slightly greater than /lP in; the darker profile 
belongs to the stable ~op; the lighter profile to t~e metastable drop, as 
described in the previous section. 'rhe shapes correspond very closely to 
theory. with k ~ 2.64 mm (or G ~ 68 dynes/em). and xa ~ .38; they may be 
compared with the f~rst row of pendant drops. for xa = .34, on Fig. 2. Pub
lished values of G = 72 dynes/em for water are considered correct under room 
temperature conditions; never-the-less, this value of 68 dynes/em should not 
be disturbing because no special precautions were taken to insure surface 
or handling cleanliness; these experiments required internal consistency, 
not accuracy with respect to some external standard. 

Production of maximum pressure drops requires some care. Even when tip 
e is set such that AP < /lPmax dripping can occur because, after break-off of 
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the elongating drop the new interface may be such that it forms an unstable 
drop which again grows and drips off. This dripping depends upon the pressure 
loss through the stopcocks and tubing between reservoir b and tip e as the 
emerging drop develops. The greater the pressure loss the less likely will 
.the new interface form a drop which is "longer" than the metastable drop; if 
the new interface is "longer" than the metastable drop it will grow and drip; 
if it is "shorter" it will contract to the stable configuration and become 
stationary. One can always adjust the stopcocks so that the contraction, 
after break-off, is observed. As ~ is increased (by moving tip e downward) 
the contraction-after-break-off motion diminishes; for aP = ~max contraction
after-break-off is not observable; the drop remains stationary, with inter
mittant dripping due to small disturboances or, possibly, surface ag!lIlg 
effects. 

a b c 

d or e f 

Fig. 4. Pendant drop pairs, showing the effect of decreasing pressure in the 
contact circle plane on the shape of stable (dark profile) and 
metastable (lighter profile)drops; distilled water in air. Contact 
circle radius, 1.05 mm; xa - 0.38. Contact circle pressure in mm 
of H20: (a) 13.0; (b) 12.4; (c) 11.2; (d) 7.0; (e) 5.0; (f) 3.7. 
The superposed grid spacing in (e) is 0.5 mm. Temperature _ 800 F. 
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These APma~ drops are shown in Fig. 5 as the dark profiles; Table I 
summarizes the data for these drops. 

Table I. Experimental data on pendant drops (.IN, HCt-H2, aqueous solution 
in air at .... 800 F) , and results of data reduction using Fig. 2 and 
appropriate numerical solutions. Values of tip radius 2, APmax 
and a drop photograph (Fig. 5) are experimental; all other quan
tities are inferred from the numerical results using these inputs. 

Ja/pg ** t Drop a (I11III) APmax x w G . APmin APmin,e 
No. (mm H2O) a a (I11III) (I11III H2O) (I11III H

2
O) 

1 1.05 10.9 .43 -'+.22 4.55 2.5 
2 1.05 .43 -1.10 3.15 2.5 2.76 2.67 
3 2.03 4.82 .82 -1.91 2.70 2.5 
4 2.03 .82 - .57 2.70 2.5 1.41 .62 
5 4.04 1.37 1.55 - .53 1.50 2.6 
6 _ 4.04 1.55 .20 2.25 2.6 - .51 -1.14 
7 5.87 .... O. 2.26 O. .85 2.6* 
8 5.87 2.26 .50 1.90 2.6* -1.28 -1. 71 
9 7.46 2.87 .29 1.00 2.6* 

10 7.46 2.87 .62 1.75 2.6* -2.38 -2.69 

* Assumed values of the meniscus constant 

** Experimentally inferred minimum tip pressure 
t Theoretically predicted minimum tip pressure 

Production of minimum pressure drops is relatively simple. The alter
nate procedure described in the previous section was used to obtain the 
photographs in Fig. 5 (the lighter profiles); again, the data for these drops 
are shown in Table I. 

In Fig. 2 the triangular symbols correspond to the contact circle 
coordinates of the drops shown in Fig. 5. One sees that the APmax points 
fall close to the AlBlClE l envelope; however, the APmin points are all sub
stantially below the A2B2C2E2 envelope, except for the smallest drop at 
x = .43; i.e., AP in> APmin e as given by Eq. (29). This seems reasonable 
since the force ba!ance on smAller drops is dominated by surface tension 
forces; for larger drops inertia effects become important. It is believed 
that an experiment with better vibration control could result in closer 
agreement with the low pressure limit. 

Padday and Pitt (8) exhibit in their Fig. 33 some experimental and 
theoretical results for critical and separating volumes of volume-radius 
limited pendant drops; i.e., those drops whose static stability limits are 
given by the present A2B2C2E2 envelope. Unpublished photographs by R. 
Picknett (1970) "of pendant drops just before rupture" are noted with 
apparently excellent agreement of the experimental parameters of his critical 
shapes with the theoretical results of Ref. 8. 
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Fig. 5.] Photographs of static pendant drops: 0.1 N, Het-H20 solution in air. Those with two surfaces 
superposed are double exposures of drops with a common contact circle. Numbers adjacent to 
the surfaces refer to Table I which summarizes the data for these drops. The symbols (circles 
and squares) give the applicable numerical results. Triangular symbols in Fig. 2 show the 
contact circle location of these drops in the x,w-p1ane. The scale mark in each photograph 
indicates 2 mm. Temperature - 80oF. 
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CONCLUSIONS AND RESULTS 

Assuming that the meniscus constant k is known, the following con
clusions may be listed. 

(a) Certain limiting conditions for the production of pendant drops 
can be seen from the envelopes bounding solution curves for drop shapes. 

(b) A ''high-pressure'' envelope gives the maximum pressure in the con
tact circle cross-section, with prescribed radius, for existence of static 
drops. . 

(c) There exists a "low-pressure" envelope which, for. a prescribed 
contact circle radius, gives the minimum pressure for static pendant drops. 

(d) An intermediate range of contact circle pressures exist, for a 
given tip radius, such that two observable pendant drops exist, one stable, 
the other metastable. 

(e) For a certain range of contact circle radii only negative contact 
circle pressures will produce sta1:ic pendant drops. 

(f) There exists a maximum contact circle radius for existence of 
static pendant drops. 

(g) Experiments reported herein are in good agreement with the fore
going remarks. 

(h) Analytical solutions for the drop shape, in the form of series 
representations, were obtained fOl~ low and high pressure in the contact 
circle plane. 

(i) These solutions allow the envelopes for high and low pressure to 
be analytically determined; in particular, envelope properties in the 
limits G- =, and G - 0 are explicitly displayed. 
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ON THE PRODUCTION OF EIUBBLES BY FOCUSED LASER LIGHT 

w. Lauterborn and H. Bolle 

Drittes Physikalisches J:nstitut, Universit!t GOttingen 

D·-34 GOttingen, Federal Republic of Germany 

The bubbles produced in liquids when giant pulses of a ruby laser are focused 
into it are studied by high speed photography with up to one million frames per 
second using a rotating mirror camera. In most of the experiments the light 
pulses are focused into distilled water by a single lens with low f/number to 
get only one single spherical bubble or a very limited number of bubbles. Bubble 
motion is evaluated from the frames wlth the aid of a digital computer using a 
graphic input device. Smoothed radius-time curves of different portions of the 
bubble wall are obtained by a sophisticated treatment of the data also allowing 
a reliable calculation of bubble wall velocities (except at the very instant 
of bubble collapse). Bubble production by laser light shows to be a very 
flexible method to investigate bubble dynamics. It is applicable to a broad 
variety of experimental configurations. An extensive study has been done so far 
on bubble dynamics near boundaries and to a lesser extent on bubble interaction 
and nonsphertcal bubbles. One of the numerical examples of the collapse of a 
spherical bubble near a plane solid boundary obtained by Plesset and Chapman 
(J. Fluid Mech. 47 (1971) 283) could be realized experimentally. Good agreement 
is found. Moreover, bubble history can be followed far beyond the validity of 
the theoretical model. Besides the wel.l-known microjet formation towards the 
wall two new jetlike phenomena are observed which both may be given the name 
counterjet as these jets are directed away from the wall. Bubble interaction 
and the collapse of nonspherical bubbl.es usually lead to jetting phenomena, 
too. Almost symmetric bubble division into two parts with simultaneous jet 
development in opposite directions has been observed on collapse of a bubble 
being flattened by a bigger bubble in its vicinity. Presently the usefulness of 
holographic lenses to produce many-bubble configurations is investigated. 

INTRODUCTION 

Bubble dynamics is a basic problem in cavitation research. Its experimental 
investigation suffers from a lack of suitable bubble production methods. As a 
new approach to this problem, the bubbles formed when focussing giant pulses of 
a ruby laser into a liquid were studied. The advantages of this bubble produc
tion method are: 

1. The location and the instant of production are precisely known. Thus, high
speed photography, the most powerful experimental method to study bubble 
dynamics, applies rather easily. 

2. There are no disturbing objects - like electrodes when using underwater 
sparks - influencing bubble motion. 

3. Spherical bubbles can be obtained. Thus a comparison with existing theory 
is possible. 

The first results on bubble dynamics obtained by this new method look very 
promising. 
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APPARATUS 

A schematic diagram of the most essential parts of the experimental setup is 
shown in Fig. 1. Giant pulses emitted by a Q-switched ruby laser with a beam 

FLASH LAMP '*' __ ~ ____ GROUND GLASS 

PLATE 

LR_U_B_Y_L_A_s_E_RJ------LE-~-S-*ffFd BUBBLES 

~LIQUID 
ROTATING MIRROR 

CAMERA 

Fig. 1: Schematic diagram of the setup 

cross section of about 1 cm, a duration of about 30 to 50 nsec and a total 
energy of about 0.1 to 1 Joule are focused into the liquid under investigation 
by a single lens with a focal length of 1.28 em in air. The container used is a 
cube with an edge length of 10 em. The bubbles produced in the vicinity of the 
focal pOint of the lens (in most cases submerged into the liquid) are diffusely 
illuminated by a flash lamp through a ground glass plate and photographed by a 
rotating mirror camera. Spherical bubbles then look black on a bright background 
with a bright central spot where the light passes the bubble undeflected. For 
the sake of clearness, the electronics needed for timing the different activi
ties of the devices has been omitted in the diagram as well as some auxiliary 
equipment like a Be-Ne laser used for alignment of the optical components and 
the photographic apparatus. 

RESULTS 

When a giant pulse of the ruby laser is focused into water, usually several 
points of breakdown occur, each being the center of a rapidly expanding bubbl~. 
The number of bubbles formed depends on the purity of the water, the light 
intensity and the effective numerical aperture of the lens used. The number of 
bubbles is decreased when the water is purified and increases with increasing 
light intensity and focal length of the lens used. The dependence on the purity 
of the water suggests that light absorbing impurities in the water act as nuclei 
for the bubble fOrming process. In the present investigation doubly distilled 
water with normal gas content (full access to the air, no degassing) is used 
in most cases. The chance to get only one single spherical bubble is then rather 
high. The dependence of the number of points of breakdown on the light intensity 
and the focal length of the lens is quite clear, as with increasing light inten
sity and focal length the liquid volume where the light intensity is sufficient 
to start a breakdown at an impurity becomes larger. 

It was observed that when the centers of breakdown are very close to each 
other, the bubbles coalesce on growth and often form a spherical or almost 
spherical bubble. With a lens of "long" focal length (5 em, say) and at a 

. ,'." ........ -. 
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sufficiently high light intensity (and total energy) oblong bubbles may develop 
from the string of points of breakdown either symmetric or unsymmetri.c. with 
respect to the focal plane, but with a high degree of symmetry about the opti
cal axis. These observations can be said to be a direct experimental proof of 
the stability of the spherical shape of a bubble during growth. When the cen
ters of breakdown are not very close to each other, all kinds of distorted 
bubbles and linear bubble strings will occur. Up to now, the arrangement of 
these bubbles cannot be reproduced, but the pure observation of what may happen 
has led to new insights into bubble behavior upon interaction. Some examples 
will be given below. But our first aim was to produce single spherical bubbles 
to compare their motion with theoretical models and predictions as a first step 
to more complicated bubble systems. 

In this paper we will mainly discuss the dynamics of a single spherical laser
produced bubble near a plane solid boundary. Besides the well-known microjet 
formation towards the solid boundary two new jetlike (or spikelike, as they 
seem to be on a smaller scale) phenomena were discovered. These jets or spikes 
are directed away from the wall (or, to be cautious, appear at the side of the 
bubble opposite to the wall). Therefore the name counterjet is suggested. A 
possible explanation for the occurrence of these jets is given below. 

DYNAMICS OF A BUBBLE NEAR A PLANE SOLII) BOUNDARY 

Phenomena observed 

A typical sequence of pictures of bubble growth, collapse and rebound taken 
at 75 000 frames per second is shown in Fig. 2. The solid boundary (brass plate) 
is to be seen dark in the lower part of each frame. It is somewhat unsharp 
because it extends far out of the deptb of field of the photographic system. 
This is the main source of error in the evaluation of distance-time curves of 
the bubbles to evaluate their dynamics (especially speeds of different parts 
of the bubble wall). With a computer-aided sophisticated smoothing procedure 
described below this difficulty could be overcome. The bubble of Fig. 2 was 
produced at a distance of b = 4.5 mm from the solid boundary and reached a 
maximum radius of Rmax = 1.1 mm. Thus the ratio b/Rmax' important for a nor
malization, becomes 4.17. This is a rather large value, nevertheless a pro
nounced jet is produced towards the boundary on collapse by involution of the 
top of the bubble. It should be pointed out that the jet (of water) is directly 
visible as a fine dark line only in the bright central spot of the bubble after 
the first collapse. The cone like or funnel-shaped protrusion is a secondary 
effect produced by the jet through deformation of the lower bubble wall on 
impingement. The jet inside the protrusion is supposed to be much thinner (like 
the fine dark line in the bright central spot). Also it is believed that £he 
velocity of the tip of the protrusion is not the velocity of the jet which will 
be higher. So we make a difference between a so-called "tip velocity" and a 
"true jet velocity". Up to now only the tip velocity could be measured (see 
below) • 

On second collapse the bubble starts as a deformed (nonspherical) bubble of a 
distinct shape: flattened at the top, elongated at the bottom and with a thin 
rod (or needle) of liquid. connecting top and bottom. This very special confi
guration (but always obtained by an initially spherical bubble near a plane 
solid boundary) usually collapses with a formation of a jet in the opposite 
direction of the first jet. This jet is just to be seen in the last frame of 
Fig. 2, but its development can also be suggested by the flattening of the for
merly elongated bottom of the bubble. Sometimes (it is believed in very symmet
ric and undisturbed situations) no such jet is observed, presumably because the 
rod of liquid of the first jet prevents its development. The explanation of 
this second jet formation runs as follows. A region of higher curvature of a 
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bubble wall collapses always faster than a part of a bubble wall with less cur
vature. This statement has been deduced from experiments with nonspherical 
bubbles (1) and is also supported by numerical calculations (2). The inward 
motion of such a faster collapsing part of a bubble wall is not arrested when 
it involutes due to the inertia of the liquid. Thus a jet is formed striking 
the opposite wall and again causing a protrusion which indicates the jet (see 
also (3». 

The preceding description of bubble dynamics near a plane solid boundary is 
valid in the majority of cases investigated. But quite often a somewhat diffe
rent behavior of the bubble is observed as shown in Fig. 3. In Fig. 3 only 
part of the whole bubble motion is shown near first collapse. The framing rate 
in this case is 300 000 frames per second corresponding to a time interval bet
ween frames of 13.3 ~sec. In the first frame it can be seen that the bubble is 
elongated with its long axis perpendicular to the solid boundary. Then the 
bubble top flattens and involutes, but after collapse a tiny jet (or spike) 
sticks out of the bubble in the opposite direction! The big jet towards the 
boundary develops on a much slower time scale. A possible explanation makes 
use of the above statement that higher curved parts of a bubble wall collapse 
faster than less curved parts. As a spherical bubble near a solid boundary 
becomes elongated perpendicular to the boundary, two areas of higher curvature 
develop which tend to collapse faster than the rest of the bubble (compare 
(2». Obviously, there must be a competition between the higher curved lower 
part of the bubble tending to a higher collapse rate and the influence of the 
solid boundary tending to slow down the motion of the lower part of the bubble. 
It seems (because of the almost flat appearance of the bubble near final col
lapse) that the higher curvature takes over in the final stage of collapse 
and may thus be able to develop its own jet. It is believed that this jet can 
only appear when there is some dissymmetry present in the bubble motion so that 
the main jet downwards cannot swallow it or push it with it (because of its 
higher velocity and bigger dimensions). That this may be the case is indicated 
by the fact that always, when such a "counterjet" is observed, the main jet is 
grossly distorted and does not develop very well. The counterjet sticks con
siderably far out of the upper part of the bubble immediately after collapse. 
This is not due to its high velocity but because the bubble as a whole is 
suddenly driven to the wall during collapse. The often porcupine-like appearance 
of a bubble immediately after collapse (or on collapse) may he attributed to 
the striking of the two jets (or opposite parts of the bubble wall) leading 
to a splashing of liquid in all directions but preferably downwards, the direc
tion of the higher velocity jet. 

These explanations of the observed behavior of initially spherical bubbles 
near a plane solid boundary seem probable but must be confirmed by more experi
ments, especially with higher framing rates and higher resolution to confirm 
the mechanisms. The crucial part is the final stage of bubble collapse which 
is not easily accessible. 

Evaluation of the Frames 

As a vast number of films were taken of bubbles collapsing near solid bounda
ries, the evaluation of bubble motion from the films became a problem. Also, as 
the boundary appears unsharp on the frames the data (distance of different 
points of bubble wall from the boundary) may scatter considerably unless a very 
careful estimation of the grey scale the boundary exhibits is made. These 
problems were overcome with the aid of a computer and a graphic input device. 
The frames were projected onto the translucent plate of the input device and 
the coordinates (bubble wall and boundary) fed into the computer. These data 
(as indicated by the crosses in Fig. 4a) were intended to be low pass filtered 
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for smoothing, but because of the steep collapse of the bubble some precautions 
must be taken as to not filter out just this steep collapse. To get rid of the 
sharp edges in the distance-time curves (just for filtering) of the top and 
bottom curves of the bubbles (T and B in Fig. 4a) the sum (5 = T + B) and dif
ference (0" T - B) curves are calculated (Fig. 4b), the part of the difference 
curve after collapse is turned about (change of sign), and both sum and diffe
rence curves are continued symmetrically to get periodic curves without jumps 
(denoted S' and 0' in Fig. 4c). These curves are then low pass filtered by 
Fourier transformation (FFT on the computer), weighting of the spectra (multi
plication with a special function havlng low pass properties), and back trans
forma~ion (again a FFT on the computer). The curves obtained are denoted Sg 
and Og in Fig. 4d. These curves are then unscrambled to get the original, but 
smoothed, distance-time curves of the bubble as shown in Fig. Sa. 

As from the smoothed curves in Fig. Sa derivates could be taken, the velo
cities of different points of the bubble wall could be calculated. They are 
plotted in Fig. 5b fc)r three cases. Of course, the velocity-time curlTes could 
not be followed through the collapse for the top and bottom of the bubble as 
there is a very fast change of speed and the framing rate is too slow to 
follow the motion. The corresponding parts of the curves before and after 
collapse are therefore connected only by a straight dotted line. 

In Fig. 5 T again denotes the top of the bubble and B the bottom (after 
collapse it is the t:lp of the protrusion). C is the center of the bubble (taken 
from the central bright spot of the bubble in the frames). The framing rate in 
this case is 250 000 frames per second and the ratio of the distance of the 
bubble (center) and the maximum radius 3.08. The time scale is arbitrarily set 
to zero at the beginning of the plot. The center curve shows that the bubble 
is driven towards the boundary during the final stage of collapse and the 
first stage of rebound with a maximum velocity of about 35 m/sec, attained 
apparently at the very point of collapse (Fig. 5b). The bubble develops a jet 
towards the boundary as can be seen in Fig. Sa from the asymmetry of the top 
and bottom curves after collapse with respect to the center curve. The tip 
velocity of the protrusion can be read from the lower diagram in Fig. 5. A 
maximum velocity of about 120 m/sec was calculated. As mentioned before, the 
true jet velocity is supposed to be higher than this tip velocity by an amount 
not yet known. But in any case the experiments show that even bubbles far away 
from boundaries (in this case b/Rmax =: 3) may develop a strong jet (when un
disturbed). From these experiments it is concluded that a spherical collapse 
of a cavitation bubble down to the very point of collapse is highly unprobable 
in any real situation and that jet formation of a cavitation bubble on collapse 
is a normal process. 

Comparison with Theory 

Plesset and Chapman (4) have calculated the collapse of an empty, initialiy 
spherical cavity in the neighborhood of a solid boundary for two cases, i.e. 
b/Rmax .. 1 and 1.5. The case b/Rmax .. 1.5 could be realized experimentally and 
thus compared with these calculations. As the instants at which pictures are 
taken of the bubble do not coincide with the instants of the calculated curves, 
an interpolation of the experimentally determined bubble shape is dOlle to fit 
the calculated curve!!. Additional difficulties arise from the fact that even 
at the framing rate applied of 300 000 frames per second the instant of collapse 
cannot be determined precisely and also from the calculations it is not quite 
clear what instant may be taken as the final collapse. (There seems to be no 
simple answer to this question.) Thus a more or less arbitrary estimate of the 
instant of collapse, where the experimental and theoretical curves were fitted 
in time, has been made and then the shape of the bubble was compared back in 
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time. The result is shown in Fig. 6. The open circles represent experimental 
data, the solid lines are taken from the calculations of Plesset and Chapman 
(4). The bubble has a maximum radius of R = 2.6 mm and was produced at a 
distance to the boundary of b = 3.9 mm, s~a¥:hat b/Rmax = 1.5. At the framing 
rate of 300 000 frames per second not the total history of bubble motion could 
be followed because of the limited frame number of 80 of the rotating mirror 
camera used. Also the initial shape of the bubble is not truely spherical. But 
nevertheless the behavior of the bubble (involution of the top and jet for
mation towards the boundary) fits the theory almost quantitatively. 

BUBBLE INTERACTION 

As mentioned earlier, special precautions must be taken to get only one sin
gle spherical bubble. Usually a linear string of bubbles is produced. All other 
parameters being the same, by variation of the laser light intensity (or total 
energy) it is possible to get only two bubbles along the optical axis. Up to 
now the mode structure and stability of the ruby laser could not be sufficient
ly controlled to get reproducible two-bubble configurations, but since films 
are easily taken a wide variety of different two-bubble configurations could be 
studied. It was noted that jet formation is predominant in bubble interaction. 
When the two bubbles are produced far away from one another and are of almost 
equal size, both develop a jet towards the other bubble on collapse. When the 
two bubbles are very close to each other they coalesce on growth to form a 
spherical or almost spherical bubble. At an intermediate distance they flatten 
on growth on the facing sides and usually develop jets towards each other. An 
example with a smaller and a bigger bubble is shown in Fig. 7, taken at 75 000 
frames per second. The smaller bubble shows a peculiar shape on collapse as 
the hemispherical bubbles observed by Benjamin and'Ellis (5). Qualitatively, 
this shape can again be understood by the fact that parts of a bubble with 
higher curvature collapse faster than parts of less curvature. A pronounced 
jet, clearly visible in the bright central area of the bigger bubble, is formed 
by the smaller bubble. It penetrates the bigger bubble and sticks out at the 
opposite side. The collapse of the bigger bubble is markedly influenced by the 
collapse of the smaller bubble, it collapses strongly nonspherically with one 
side flattened. 

A second very interesting example was obtained with one big and one very small, 
bubble produced simultaneously at some distance (Fig. S, 75 000 frames per 
second). The small bubble is highly flattened attaining a shape very similar 
to an oblate spheroid like the earth but with somewhat different,cU%Ya~ures 
at the north and south pole. It is believed that this shape is a result of 
both the strong shock wave emitted on bubble formation(6) and the geometrical 
interaction of both bubbles. On collapse the small bubble divides itself into 
two parts and develops two jets through each of these parts in opposite direc
tions through the north and south pole. One jet penetrates the big bubble 
and leads to a division of the big bubble on collapse into two parts (not shown 
in Fig. B). This behavior of the small bubble can again be understood by the 
fact that parts of higher curvature collapse faster than those of less curva
ture. The curvature of the small bubble in the direction towards the north and 
south pole at the equator is higher than at the poles. Thus the bubble con
stricts more rapidly along the equator and the inflowing water divides the 
bubble upon contact at its center. The water can be supposed to attain a high 
velocity and is apparently squeezed oU± in the direction of the north and south 
pole simultaneously because of the symmetry of the configuration. So two 
bubbles each with a jet in the opposite direction to the other are formed. 

The collapse of a bubble of similar shape as in Fig. 8 was calculated by Chap
man and Plesset (2) up to near collapse. Qualitatively the calculations could 
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be confirmed by this observation. Moreover, bubble history can be followed in 
the experiment beyond the point of collapse giving a more complete picture of 
bubble dynamics in this case. 

ON THE PRODUCTION OF MANY-BUBBLE CONFIGURATIONS 

Of most interest in cavitation bubble dynamics is the investigation of whole 
cavitation bubble fields where many bubbles are present at a time because this 
is what happens in reality. The multiple interactions may totally alter the 
dynamics observed with a single bubble or with two bubbles. To start some 
systematic experiments concerning these questions an extension of the method 
described is presently investigated. The idea is to use holographic lenses 
(i.e. lenses with multiple focal points in space) to get simultaneous breakdown 
in the liquid (and thus bubbles) at different points according to the lens used. 
The experimental setup will then remain simple as before. 

Fortunately the question of the production of holographic lenses that will 
withstand the high light intensities needed has recently been studied and 
obviously been solved (7). In the technique described in (7) the holographic 
interference pattern is etched in chromium or quartz layers deposited on glass 
substrates. It is not a simple technique as it demands some very special equip
ment and very careful and precise work. But the knowledge that it will work 
will render it less difficult. The first step is to calculate the hologram, i.e. 
the interference pattern in some plane of the different points in space (later 
the focal points of the holographic lens) and a plane reference wave perpendi
cular to the plane. Upon illumination of the hologram with the plane reference 
wave, the points in space will be reproduced, and thus a lens with multiple 
focal pOints is obtained. Several digital holographic lenses have already been 
calculated on a computer, but not yet etched into quartz layers. An example is 
shown in Fig. 9, where a small portion of a calculated hologramm is shown in 
almost the size the electrostatic plotter produces it on paper. To plot the 
interference pattern only two grey scales (black and white) were used. This 
introduces higher diffraction orders, but also the efficiency of the first dif
fraction order is enhanced. The real drawback of having only two levels in the 
plot (or hologram) is the appearance of additional points in space near the 
original one's due to what may be called "cubic dJ!fference diffraction orders". 
This question has been studied by several authors the first being Friesem and 
Zelenka (8). The hologram part of which is shown in Fig. 9 focuses a plane wave 
into 27 points in four different planes. The points are arranged in such a way 
as to form the letter string "HOLO" with each letter in a different plane in 
space. Fig. 10 shows photographs of the point distribution in space obtained 
upon illumination of the hologram. The arrangement of the letters in different 
depths can easily be noticed. 

We hope that with this method it will be possible to produce many-bubble 
configurations with some degree of repeatability so that their dynamics can be 
investigated. 

FUTURE WORK 

As the first results look very promising the investigations will go on with 
special emphasis on bubble interaction studies .• As a sideline to these investi
gations a holographic apparatus is developed to store the bubble fields pro
duced in a hologram (9). Then better conclusions on the bubble shapes and their 
relative location in space can be drawn. As up to now no suitable holographic 
apparatus exists capable of taking holograms at high framing rates (a holo
graphic equivalent to the rotating mirror camera) first steps towards the con-
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struction of such a device are undertaken. 
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Fig. 2: Dynamics of a laser-produced spherical bubble near a solid boundary. Framing rate 75 000 frames per second, 
maximum bubble radius R = 1.1 mm, distance of bubble center from solid boundary b = 4.5 mm, 
b/R = 4.17, size of ~~ individual frames 5.4 rom x 3.3 mm. 
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Fig. 3: Bubble collapse and rebound near a solid boundary. The framing rate is 300 000 frames per second, 
the size of the individual frames is 5.6 mm x 3.9 mm. 
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Curve time 
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7 1. 036 

Fig. 6: Compari.son of experimentally determined bubble form (open circles) 
on collapse of a spherical bubble near a plane solid boundary with 
interpolated theoretical curves taken from Plesset and Chapman (4) 
(solid curves). Framing rate 300 000 frames per second, maximum 
bubble radius R = 2.6 mm, distance of bubble from the solid 
boundary b = 3.~a~, b/R = 1.5 •. 
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Fig. 7: Interaction of two bubbles produced at an intermediate distance. 
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The framing rate is 75 000 frames per second, the size of the 
individual frames is 5 mm x 6 mm. 
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Fig. 8: Interaction of two bubbles, one being small compared to the other. 
The framing rate is 75 000 frames per second, the size of the 
individual frames is 2.25 mm x 3.5 mm. 
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Fig. 9: Portion of a digital holographic lens (hologram) focusing a plane 
wave into 27 pOints in space, reproduced at almost the original 
size of the electrostatic plotter output. For application the plot 
is reduced in size. One edge of this plot would then have a length 
of about 5 Mm. 
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Fig. 10: Photographs of the focal point distribution of the holographic 
lens part of which is shown in Fig. 9. 
a) - d) Small depth of field, the four different planes of the 

letters are approximately in focus, 
e) large depth of field, viewpoint as in a) - d) (loss in 

resolution) , 
f) another aspect (looking from the left) at large depth of field. 
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SOME ASPECTS ON DYNAMICS OF NONSPHERICAL BUBBLES 

AND LIQUID DROPS 

D. Y. Hsieh 
Division of Applied Mathematics, Brown University, Providence, R.I. 

ABSTRACT 

The general formulation of the dynamical problem of non
spherical bubbles and liquid drops, or the problem of two ideal 
fluids separated tlY an interface i13 presented both in terms of 
Eulerian and Lagrangian coordinates. These formulations may also 
be expressed by a Hamiltonian variational principle which takes 
into account explicitly the surface energy of the interface between 
the two fluids. The general formulations are applied specifically 
to two classes of problems, i.e. the nonlinear oscillation of 
bubbles in an oscillating pressure field and the coalescence of 
two liquid drops or bubbles. 

I. INTRODUCTION 

. This paper reports some of the recent progress in the study of 
':the dynamics of nonspherical bubbles and liquid drops. To deal 
with some specific problems in this category, the straightforward 
way may be the numerical methods making extensive use of computers. 
For analytical approaches, the perturbation expansion based small 
'deviation from spherical symmetry of the system have usually been 

.:adopted in the past. Recently, an approximate method based on the 
-'variational formulation seems to offer some promise for the study 
of this class of problems, and that is one aspect of the problem 
we shall report in this paper. 

Most of the fluid dynamical problems are more conveniently 
treated in terms of Eulerian coordinates. It is also generally 
true for most studies on bubbles and liquid drops. However, there 
are certain situations in which the Eulerian coordinates are not 
adequate. In particular, the details of the process of break-up 
and coalescence are often lost in terms of the more convenient 
Eulerian coordinates. Therefore a parallel development in terms 
of Lagrangian coordinates is very helpful and sometimes even 
essential. The similarities and differences of the solutions in 
terms of Eulerian and Lagrangian coordinates, could furthermore 
offer some insight for further progresses. 

Thus~ in the following we shall first present the Eulerian and 
Lagrangian formulations of the problem as well as the corresponding 
variational principles. Then we shall use the Lagrangian formula
tion to solve the linear stability problem of a spherical bubble. 
Using this solution as a guide, we shall indicate how an approximate 
variational method can be developed to solve the problem of 
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nonlinear nonspherical motion of the bubble. Next we shall also 
use the Lagrangian formulation to treat the problem of the 
coalescence of two liquid drops, one large and one small. The 
approaches employed to deal with the bubble problem can of course 
be adapted to deal with the problem of the liquid drops and vice 
versa. 

Another class of the problem is the oscillation of bubbles 
and liquid drops in an externally imposed oscillating pressure 
field. Here we present some of the recent results on the nonlinear 
oscillation of a spherical bubble in an external sinusoidal 
pressure field using the newly developed variational method. 
Ultimately, the variational method will be applied also to the 
problem of nonlinear oscillation of nonspherical bubbles. The 
present study can be considered as a preliminary step towards 
that goal. 

II. Eulerian and Lagrangian Formulation and the Variational 
Principle. 

Let 123 F(x ,x .x ,t) = 0 

be a surface that diVides the whole space into two 
G' each occupied by an ideal, compressible fl~ld. 
governing equations in Eulerian form in G are~ ): 

p ,t + (pvi ) ,i = 0 , 

(ps) + (psvi ) 
.i = 0 , 

.t 
and 

Vi,t + 
j 

v Vi,j = -
1 
p P,i i = 1.2.3. 

where p is the density; s, the entropy; p, the pressure and vi the 
ith contravariant component of the velocity of the fluid in G; and 
the general tensor notation has been adopted here. If we introduce 
the internal energy function U(p,s), then we also have the follow
ing thermodynamic relations: 

au L -= ap 2 " P 
(5) 

and 

au = T as , (6) 

where T is the temperature. 
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An identical set of equations in primed variables can be 
similarly written down for the fluid in the region G'. 

On the interface F(x1 ,x2 ,x3,t) = 0, the kinematic and 
dynamic interfacial conditions are as follows: 

and 

= 0 

'i 
F,t + v F,i = 0 

p-p' = a(; +;) , 
1 2 

(8) 

where a is the coefficient of surface tension, and r l and r 2 are 

the two principal radii of curvature at the point of interest on 
F=O. They are taken to be positive if the centers of curvature 
lie on the side of G, and negative if otherwise. 

To express the same problem in Lagrangian form, we introduce 
(Xl,X2,X3) as the generalized coordinates of a fluid particle at 
the initial moment. Thus the present coordinates of the particle, 

(xl ,x2 ,x3 ) are given by 

xi = xi (Xl,X2,X3,T). (10) 

while the inverse relation is 

Xi i( 1 2 3 ) = X x ,x ,x,t , ( ll) 

and t=T. 

Then the equations of conservation of mass, entropy and 
momentum are given respectively by: 

where 

/= 
[det 

[det 

Jl / 2 
gkm 

(12) 

(13) 

(14) 

(15) 
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and ( ) denotes the material derivative with respect to time and 
( );J denotes the total covariant derivative. 2) 

The kinematic interfacial condition is expressed simply by 
the equation of initial interface: 

F (Xl X2 X3) = 0 (16) o " , 

while the dynamical interfacial condition is 

p-p' = -2aH , (17) 

where H is the mean curvature of the Pfe~ent interface and can be 
expressed in terms of surface tensors. 2) 

The above Eulerian formulation as given by (2)-(9) can be 
shown(3) to be equivalent to the following variational problem: 
the flow field of the system and the motion of the interface are 
such that the functional 

t2 

J = f 
tl 

dt f dV[~ pv 2_PU] 
V 

(18) 

is an extremum, subject to the constraint conditions (2), (3), 
and 

where u can be interpreted as one of the Lagrangian coordinates of 
the fluid particles, A denotes the interface and V = VG+VG, is 
volume of both regions G and G'. 

To deal with regions that contain incompressible fluids or 
of uniform state, it is Qften more convenient to use another 
functional for variation t3 ): 

t2 t2 

J = f dt f p(H,s)dV - f dt I adA, (20) 

tl V tl A 

where the pressure p is considered as a function of the enthalpy H 
and entropy s given by the usual thermodynamic relation 

dp = pdH - PTds, (21) 

with H explicitly prescribed as 
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H = -~ t-SW t-aX t - 12(~ i+s~ i+ax i)2 , , " ", 
(22) 

where X is a var:table conjugate to a, while the fluid particle 
velocity is interpreted as: 

v = i (23) 

The Lagrangian for~~tation as given by (12)-(17), on the other 
hand, can be shown' as equivalent to the following var:tational 
principle: the flow field of the system and the interfacial 
conditions are such that the functional 

t2 

I = f dT J 
V 

(24) 

i5 an extremum subject to the conditions (12) and (13), where 

Cul ,u2 ) are the surface coordinates for the interface, and a is 
a surface tensor. (2) 

III. The Motion of a Nonspherical Bubble. 

For the study of the nonspherical motion of a systElm, we 
often start with the study oT the stability of the spher:l.cal 
motion of the system. For linear stability analYSis, we usually 
perturb the interface from sphericity slightly. Mathematically, 
if the original Eulerian spherical interface is given by: 

r = R( t) , 

now we usually take the interface as given by: 

r = R(t) + E a~(t)y~(e,~), 

where ym,s are spherical harmonics and a~(t)'s are assumed to be 
small. n 

For bubbles in an incompressible, inviscld, thermally non
conducting fluid) the stability problem has been investigated 
fairly extensiveJ.y'4 The linear stability of expanding and(6)(7) 
collapsing bubbles~ )(5) as well as bubbles in oscillation 
have all been studied in some detail. For collapsing bubbles the 
nonlinear stabil:1.ty problem has also been treated numerically~8) 
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as well as by approximate analytical methods. (9)(10) When the 
effect of compressibility and heat and mass traosf~r is included, 
the stability equations have also been derived.~lO) On the other 
hand, deviations from sPherlcal(shape of a drop of incompressible 
fluid lead to surface waves(ll) 3) or eveD break-up of the drop. 

In this section, we shall be mainly concerned with the non
spherical motion of a bubble in an incompressible fluid based on 
the Lagrangian formulation. Let us adopt the spherical polar 
coordinate systems for both the present and initial coordinates. 
Thus the system (r,e,¢) will bOe identified with present general 
coordinates (xl ,x2 ,x3), while (R,e,~). with (Xl ,X2 ,X3). With 
these identifications, if we consider the spherical motion, i.e. 

r(R'T)~} 
e = e. 
<P = ~, 

r = 
(25) 

and take the fluid in the region G as incompressible, we obtain 
from equation (12)-(17) in section 11:(2) 

r3 = R3+D3(t)_D3 , (26) o 

and 

DD + 1 ii = J:. (p' _ 2cr - P ) (27) 2 p D ~, 

where p is the pressure in the liquid at infinity. The equation 
of bubbie surface is 

R = Do • or r = D(T) • 

To treat nonspherical motion, let us write 

r 

e 
<P 

p 

where 

= 
= 

= 

= 

F(R,T) + f(R,e,~,T) 
e + g(R,e,~,T) , 
41 + h(R,e,41,T) , 

PO(R,T) + PJ(R,e,41,T) 
} 

(28) 

(29) 

(30) 

and PO(R,T) is the solution for pressure in the spherically 
symmetric case. Let us expand f and other functions in terms of 
spherical harmonies, e.g. 
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fC R, e, Ill, T) = I: fR.m(R,T) y;ce,lll) . 
R. ,m. 

(31) 

Now let 
a 

[F2fR.m] 
R. d 

[ D2aR.m(T)] = ( £.) aT F dT 

Then, it can be shown that when the perturbations from spherical 
motion, f,g,h,Pl' are small, we can obtain the following linear 
stability eqUation:(2) 

.. 
aR.m + 3~ ~R.m - [(R.ol)D - (R.-l)(R.+l)(R.+2) p~3] aR.m = 0.(33) 

It may be noted that when aR. is small, the bubble surface is 
given in terms of Eulerian c~ordinates by: 

R. 
r = D + I: aR.m Ym(e,~) 

R. ,m 

and the equation (33) is the same as that derived from the 
Eulerian formulation.(4) When a is not very small, as some
times one wants to extrapolate tffW linear solution to the non
linear region, the results obtained here will differ from the 
corresponding extrapolation. 

To treat the nonlinear problem, the variational method is 
often useful when experience or other information could suggest 
good trial functions. Thus when spherical harmonics of higher 
degrees are expected to be not as important, we could take the 
added terms in (29), i.e. f,g,h and Pl' to contain only spherical 
harmonics of degree 2. 

Based on this assumption, let us treat the problem of the 
axially symmetric collapse of a bubble with uniform internal 
pressure in an incompressible fluid as an example, and indicate 
how we approach this problem. For simplicity, we shall neglect. 
the surface tension. Even with the angular dependence explicitly 
given by the spherical harmonics of degree 2, the functions 
f,g, and p are functions of both R and T. This is not desirable, 
since the ~esulting Euler equations would be coupled nonlinear 
partial differential equations. Using the solution of the linear 
stability problem as a guide, let us take the trial solution as: 
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4 
r = F + (~) a2(T)P2(cos 6) , 

e = 0 

F(R,T) 

1 D4 d 
3 ~ a2(T) d6 P2(cOS 6) 

F 

Po (D2n+2Dl)2) 
= Poo + F 

(34) 

(36) 

Por incompressible fluid, the internal enel:\gY term (-poU) in the 
expression (24) should be replaced by pf, Thus the volume 
integral will yield !pdV in the present vo~ume of the fluid. For 
this problem with axial symmetry, as given by (15), we have 

(38) 

It is eVident the term sin e will cause difficulty in evaluating 
the integral (24) with respect to the variable 0 and R. It 
may be reasonable approximation for the purpose here to replace 
sin e by sin 0 in (38), then in the intep:ral (24), the 
integration with respect to Rand e in (24) can be put in the 
form: 

t 

I = f2 dT L(D(T),D(T),D(T)'~2(T)'~2(T),a2(T);Pm'P"Do)' (39) 

tl 

The variation of I with respect to D and a2 will then lead to two 
ccupled nonlinear ordinary equations. The comparison of the solu
tion of this approximate sche~e with the corresponding solution 
from the Eulerian formulation(lO) should be interesting. 
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IV. The Coalescence of Two Spherical Drops 

It has been well establlshed that the coalescence process 
plays an important role in the growth of raindrops especially in 
warm clouds. (12) Extensive theoretical and experimental research 
has been carried out for the study of coalescence efficiency, i.e. 
the fraction of the processes that lead to coalescence after two 
raindrops collide with each other. (13 ) Due to difficulty of the 
analysis and the general state of art in the study of the complete 
rainfall problem, it is understandable that there has not been 
much investigation of the detailed hydrodynamics of the coalescence 
process. Howe"ler, it is certainly fascinating if we can follow 
the coalescence process in time especially in the vicinity of the 
point of coalescence, and see how the coalesced drop oscillates 
or how the drops separate again after collision. 

To approach this problem, we shall limit our study to the 
coalescence of one large drop and one small drop. The initial 
configuration is taken to be two drops with radii D and d 
respectively just in touch with each other. (Fig. 1) Let us 
assume d « D, and take the larger drop stationary initially while 
the smaller drop as a whole has some initial velocity not 
necessarily perpendicular to the tangent plane of the drops at 
the contact point. 

Since d « D, it can be argued that the free surface of the 
drops does not deviate much from the spherical shape r = D, or 
r = Ro ' where 

(40) 

is the radius of the coalesced drop if it is spherical. Thus, 
the linear theory of the stability of the spherical motion may 
be adequate for this study. 

It is clear from the outset that the Eulerian formulation is 
not appropriate for this problem. Because the initial free 
surface can not be described by the form like: 

which implies that r is a single-valued function of e and ~. To 
achieve the single-valueness of the free surface, the small drop 
could be replaced artifically by a small cap with same volume 
and free surface area as those of the original small drop. But 
then the initial contact would be a surface contact with finite 
area rather than the point contact, and the detailed dynamical 
process at the contact point would not be revealed. 
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Therefore we should try to approach this problem by use of 
the Lagrangian coordinates. We shall formulate the problem as 
if the motion of the system is some deviation from a single 
spherical drop of radius R. Let us define a fictitious initial 
state or reference state a~ some, = 'i < 0 for which the drops 
are described by 

r = R 
e = e 
cp = 4> 

with the free surface given by 

r = Ro 

The general state of the system are given by 

r = R+f(R,e,~,,) 

e = e+g(R,e,~,,) , 

cp = ~+h(R,e,~,,) 
In particular, the real initial state at , = 0 as shown in 
figure 1 is given by 

r(R,e,~,O) = R+f(R,e,~,O) 

cp(R,e,~,O) = e+g(R,e,~,O) 

cpCR,e,~,O) = Hh(R,e,~,O) 

(41) 

(42) 

(43) 

(44) 

The fictitious initial state can be chosen in many ways. Or in 
other words, the functions f(R,e,~,O), g(R,e,~,O) and h(R,e,~,O) 
can be chosen in many ways. The only requirements is that the 
states at , =, and, = 0 are kinematically connected, since we 
are dealing wit~ drops of incompressible inviscid fluids. For 
compressible or viscous fluids, the situation will not be so 
simple. 

One such solution is given by 

r(R,e,~ ,0) = RH(Dl-R)+H(R-Dl )[H(eo (R)-0)Rl +H( 0-00 (R) )R2] , (45) 

cos[e(R,0,~,O)J = cos 0H(DI-R)+H(R-D~{H(00(R)-0)(D+d+R3)/Rl 

cp(R,0,~,O) = ~ , 

+ H(0-eo(R))[R2cos 0+2(R-D1 )2/D1 (2R-D1 )}, 

(46) 

(47) 
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where 

Dl RO-d, Ri = (D+d)2+CR-Dl)2+2(D+d)R3 

R3 = [R2cos S-Dl(2R-D~J/(R-Dl)' 

Dl 2 
cos So(R) = 1-2(1 - r) , 

1 
and H is the Heaviside function such that H(x) = { , for 
x ~ O. 0 

The correspondence between the configurations of the state 
,=, and ,=0 is shown in Figures 1 and 2. The same coordinates 
des~ribe the fluid inside the sphere R < Dl • For fluids in the 
spherical shell D, < R < R in Fig. 2, those with S < So(R) will 
occupy the small sphere inOFig. 1, and the surface S = e (R) 

o 
degenerates into a singular line; while those fluids with S> S (R) 
will spread out to fill the entire spherical shell Dl < R < D 0 

in the large sphere of Fig. 1. When d « D, the state described 
by {45).{47) can be put in the form (44) with f ,g,h considered as 
small quantities. 

It is easily verified that the state at '='i as described 
by (2) and (3) satisfy the equations (12)-(17) in section II. 
Moreover the pressure inside the liquid drop is constant: 

20' 
P = r ' 

o 
(48) 

if outside the liquid drop is assumed to be free space with zero 
pressure. 

Now let us substitute (43) into 

p = 20' + 
Ro 

Pl(R,e,~,,) , 

and keep only terms linear in f,g,h 

f" 
1 

(PI )R = - P 
R2 = 1 

(Pl)S g" p 

R2sin2eh
TT 

= I 
(Pl)~ p 

and 

2f + ~ 1 ( ) 
R fR + sin e g sin e e o 

(14) 

and Pl' 

and (15), write 

We obtain 

(50) 

(51) 

(52) 

(53) 
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From equations (51) and (53), we obtain 

Let us now express f and PI in terms of spherical harmonies, thus 

f(R,6,4>,'t) 

Pl(R,6,4>,'t) 

Then the equation (54) becomes 
2 1 

[2Rf R.m + R (fR.m)RJ't't + P R.(R.+l)PR.m = 0, 

while (50) becomes 

Equations (56) and (57) lead to 
2 R (PR.m)RR + 2R(pR.m)R - R.(R.+l)pR.m = 0 

Thus 

As PR.m is finite at R=O, and we obtain 

R. 
pR.m(R,'t) = AR.m('t)R • 

For this linear theory, the boundary condition (17) 

o(R.+2) (R.-l)fR.m(Ro''t) 
PR.m(Ro''t) = _ R2 

o 

Thus 

(55) 

(56) 

(58) 

(59) 

(60) 

leads to 

(61) 

(62) 



· ..... '. : ~ ; .. 

350 

Now the equation (57) becomes 

01(1+~(1-1)f1 (R ,T)R1- 1 

(f1m)TT = - 1+2m 0 
pRo 

= [01(1+2)(1_1)]1/2 
wi PR3 

o 

Let us denote 

then the integration of (63) yields 

Let us denote 

Then after setting R=Ro the equation (65) leads to 
T 

U1m(T) = -w; f (T-t)u1m(t)dt + a tm + ~1mT . 
o 

The last eq~ation can be solved to obtain 

atm 
U~m(T) ~ aim cos wt ' + w~ sin WtT 

, 
Thus we obtain from (65): 

R 1-1 ~1 
f 1m(R,T) = (~) [a1mcos wi' + ~'sin wi'] 

o wi 

(63) 

(6~) 

(65) 

(67) 

(68) 

af1 R 1-1 R 1-1 
+ [a, m(R,O)-~1m(Ro) J, + [f1m(R,O)-a1m(R~) J. 

(69) 
3f 

Now f 1m (R,O) and a,1mCR.O), hence also aim and ~1m can be obtained 
from (45) and the initial impact velocity. Therefore ftm(R,T) is 
completely determined. The solution (69) is of course the general 
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solution of the problem of the linear stability of a spherical 
drop in Lagrangian form. The first term'represents the 
oscillatory part of the motion with frequency w~, and in the 
linear range, the last two terms will make no contribution to 
surface motion. Thus strictly speaking, the linear theory 
presented here can only apply to the coalescence of drops by 
normal impact. That f~m does not depend on the solutions and 
the initial condition of g and h is also an indication to this 
effect. To account for the oblique impact we need either a 
second order development beyond this linear analysis or a 
judicious extrapolation of the linear results. With the results 
of the linear theory available here, it is not very difficult to 
develop the second order theory. However, many interesting 
features of the coalescence process in the vicinity of contact 
point could already be revealed from the study of the coalescence 
by the normal impact. 

V. -Nonlinear Oscillation of Bubbles 

We shall report here the recent results on the nonlinear 
oscillation of bubbles.making use of the variational methods. The 
details of the variational methods as well as the(s~~~jfiC applica
tion to bubble oscillation is presented elsewhere 1 )t 1 5). Let 
us consider the adiabatic oscillation of a spherical gas bubble 
in an incompressible fluid under an externally applied sinusoidal 
pressure field. The governing equation for the bubble radius R 
is: 

3 ·2 
RR +' 2" R + aRR L) + Po sin wt, 

Ra P 
(70) 

where y is the ratio of specific heats; Ra' the equilibrium 
radius; a , a damping constant; and the last term representF 
the externally apolied pressure field. The dampihg is introdu~ed 
somewhat artifically; The damping due to the viscos~ty of liquid can 
be easily represented accurately. However it is more involved to 
incorporate the damping due to thermal dissipation and the viscosity 
of the gas. 

where 
t 

J = I 
o 

Equation (70) is equivalent to the variational principle: 

AJ + AI = 0 , (71) 

2 3 + 3 R posin wt} dt , (72) 

/ " \ 
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(74) 

In more refined treatment, we can let Ro'oo' Rl and 01 all 
as slowly varying function of t. Here for simplicity, we shall 
assume that they are all real constants. p F 1 is taken to be 
real and positive. Thus we are looking for asymptotically 
periodic solutions. 

Substitute (74) into (72) and (73), then for large t, the 
integrals can be approximately evaluated. The dominating terms 
are the secular terms multiplied by t. From the independent 
variation of llRb , ~Ro' Aoo ' llRl , and ~ol' we obtain a set of 
five algebraic equations to determine these five unknowns. 

If we make further simplifying. approximations that the 
surface tension be neglected and ~ = Ra' and the forcing amplitude 
is not very large so that we can neglect the 3rd and higher or~er 
small terms, then we obtain the following interesting results:\15) 

1 For p ~ 2 ' and p F 2, we obtain 

R .= a 
1 (75) 

However for p = 1/2, it is found that there is another branch 
of the solution for which Rl ~ O. This branch is determined by 
the following relations: 

and 

-2w~Rosin(20l-00) ~ ~ awRocos(20l-0 0)- :~a sin 201' 

(78) 



where w2 
s 

9 2 3( ) 2 2 Ib W + 2 Y-l wo ' Wo 

From (76)-(79), we can solve forlR ,Rl,Qo and 01' The 
details will be presented elsewhere. ( ~ They contain the 
information about the threshold amplitude p for such solution 
to exist, the amplitudes and phases of the ?undamental and sub
harmonic modes of the oscillation. 

If we carry out our analysis to include terms of the 3rd 
order small terms, we found that there is also another branch 
of the solution for which Rl~O if p =1/3. These subharmonic 
have also been found independently by prosperetti.(16) 

In principle, this variational technique can also be applied 
to the nonlinear oscillations of nonspherical bubbles. But 
there are still formidable practical problems to overcome. It 
may be remarked that the variational methods has been succ{~~fUllY 
applied to the study of collapse of a nonspherical bubble. ) 
The approximate trial solution we take consists of the spherical 
mode and the spherical harmonic mode of degree 2. This is found 
to be a fairly good approximation. However, for the oscillation 
problem, it seems that higher spherical harmonics may be 
important and it is not clear that a single harmonic mode is 
adequate as a first approximation. Further study in this area is 
continuing. 
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ON THE OSCILLATIONS OF DROPS AND 

BUBBLES IN VISCOUS LIQUIDS 

Andrea Prosperetti:l: 
California Institute of Technology, Pasadena, California 

INTRODUCTION 

The normal-mode approach to problems of small-amplitude 
waves in fluids is a standard one and has been widely used in the 
past. The method consists in assuming an exponential time depend
ence of the type exp( -Ont) for all the dependent variables and in de
riving a characteristics equation for the complex eigenfrequencies 
on (see e. g. Ref. 1, Ch. X, XI). The solution to a particular initial
value problem is then obtained in the form of a series by a superposi
tion of the various normal modes with appropriate coefficients. 

In the presence of viscosity the equations governing the 
motion become parabolic, and the series in question is usually very 
slowly converging for small times. However, for free (damped) 
oscillations, the small-time behavior is of considerable interest 
for many important aspects, such as questions of stability, so that 
a different form of the solution is needed. It is the purpose of the 
present paper to analyze the problem from this point of view, eluci
dating the characteristics of the small-time behavior of the oscilla
tions of drops and bubbles about the spherical shape. 

For the case of a viscous liquid drop in a medium of negligible 
dynamical effects (vacuum, air) it is found that, if the motion is 
irrotational at the initial instant, the effective damping and frequency 
agree with those given by Lamb (Ref. Z, p. 640) and Rayleigh (Ref. 8) 
for small times. However, as time passes, the vorticity that is 
generated at the surface starts to diffuse inwards bringing about an 
increase in the effective damping. The normal-mode results of 
Chandrasekhar (Ref. 1, p. 675; Ref. 3) and Reid (Ref. 4) are 
recovered as t--oo. It is interesting to notice that the relaxation 
of the system towards the asymptotic regime is not exponential, 
but only algebraic with time. Another remarkable feature is that 
the asymptotic effective damping is sIl'l:aller than the initial one. 

:I: On leave of absence from Istituto di Fisica, Universitci Degli Studi, 
Milano, Italy. 

/- "., 



';'- . 

· ~. ~ ' .. \ 
'.;" . 

" ,-.\ 

358 

Similarly, for the case of a bubble in an unbounded liquid, Lamb's 
irrotational results (Ref. 2, p. 641) are reproduced for small times, 
whereas the asymptotic solution coincides with that derived by Miller 
and Scriven (Ref. 5) in a normal mode framework. 

PRELIMINARIES 

We consider a nearly spherical free surface ~(t) separating two 
incompressible, viscous, immiscible fluids that fill the entire space. If 
body forces are negligible, the equilibrium configuration of ~ is main
tained by surface tension and is that of a sphere; the pressures in the 
inner and outer regions are uniform, and they are related by: 

2T 
PI - P2 = R (1) 

where T is the surface tension and R the equilibrium radius. The 
outer pressure P2 will be taken as reference value and set to zero. In 
the following the subscripts 1 and 2 will be attached to all quantities per
taining to the inner and outer region respectively. When no subscript is 
indicated, reference can be made i.ndifferently to either region. 

When the equilibrium situation is slightly perturbed, the ensuing 
motion is governed by the (linearized) Navier-Stokes equations: 

(2) 

(3) 

where U denotes velocity and p, .... are the density and viscosity of the 
fluids. 

The surface ~ can be represented by a superposition of spherical 
harmonics. To first order in the perturbation of the spherical symmetry, 
however, the equations for the different IlDdes are uncoupled so that we 
may consider a single one: in spherical coordinates we thus let: 

~(t): ~'(r,9,t) =- r - R -ea(t)Pn(cos 9)= 0, (4) 

where 0 < e < < 1, and P is a Legendre polynomial of degree n ~ 2. 
In writing Eq. (4) it has be~n assumed for simplicity that the surface 
maintains an axial symmetry: this restriction (which can be lifted by 
adopting the toroidal-poloidal formalism for the description of the 
velocity field, sel~ Ref. 1, p. 622), has no consequence on the equation of 
motion for a(t). 

In the following developments only terms of first order in e will 
be retained. To this approximation the outward unit normal Ii to ~ is 
given by the expression: 

(5) 
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where e , ;- are unit vectors in the radial and azimuthal direction 
respecti~ely.9 On the free surface the kinematical boundary conditions 
are (Ref. 6, pp. 60, 148): 

BF ..... .-ar + (U • 'i7 )F = 0 (6) 

Ut = Ut 1 2 
(7) 

where the subscript t denotes the tangential component of the velocity 
to the free surface. If one of the two fluids is inviscid, only the first 
condition applies. The dynamical boundary conditions stipulate that 
there should be no discontinuity in the tangential stresses: 

(8) 

and that the discontinuity in the normal stress should equal the surface 
tension T times the total curvature: 

~ 0 [(crz - CYl)~] = TWo ~ • (9) 

In these equations the stress tensors CY I and CYz are evaluated on the 
inner and outer sides of t respectively. To the above boundary conditions 
the requirements of regularity at infinity and at the origin must be added. 

It is convenient to separate out the effect of viscosity by writing: 

where u is the potential flow velocity of the inviscid case satisfying: 

u = E:'i7cp 

8F ........ ar+ uo 'i7F=O 

From Eq. (3) one then deduces the following equations for 

Bv .... .... 1--at = - \I 'i7 X (W X v) + P 'i7 pI 

(lOa) 

(lOb) 

(11) 

-v: 

(lZ) 

(13a) 

(13b) 

where \I = ~ p is the kinematic viscosity and the pressure has been 
split into two parts, p=po+p'. In order to satisfy (13a) identically, we 
introduce a stream function representation of the vis cous flow field: 

.' . ~ , " 
'<. "\".' 

.\ 

/- "'\ 
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I' SlnS 
(14) 

Results of the type of those obtained by Chandrasekhar, Reid, 
Miller and Scriven can now be derived by assuming an exponential time 
dependence of the various quantities. 

SOLUTION OF THE FLUID MECHANICAL PROBLEM 

The solution of the potential problem (10) can be taken from 
Lamb (Ref. Z. p. IZ1) or Plesset (Ref. 7) as: 

I R-n+l naP 
q>l=:n r n (15 ) 

I n+Z -n-I q> :: .. - R r aP 
Z n+1 n 

(16) 

where dots denote time differentiation. 
inviscid part of the pressure to be: 

Eq. (11) then determines the 

(17) 

pO 
-1. = . ...!... Rn+Zr-n - l aP 
Pz n+l n (18) 

To solve for the viscous component of the flow we introduce the 
vorticity til' = e V xv, in terms of which Eq. (IZ) becomes: 

~f = -\lVX(V'XW) (19) 

The solution can be found by separation of variables as: 

-" 1 .... 
w = 0 (r, t) P (cos 9) e (ZO) n cp 

where pi is an associated Legendre polynomial, -; = -; X;-8' and 
O(r, t) is n the solution of: q> r 

Z 
an _ \I ~ _ Z\I an + n(n+l)~ C'l= 0 (21) 
at arc. r ar rC. 

The boundary conditions for this equation are that ani / ar vanish at the 
origin and "z at infinity, and that 0 1 (R, t), OZ(R, t) equal two functions 
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001 (t), 002(t) that will be determined by the conditions at the interface E*. 
As initial condition we assume Orr, 0) =f(r), with fer) a prescribed function. 
Eq. (21) can now be solved by taking its Laplace transform with respect to 
time. The solutions satisfying the appropriate initial and boundary condi
tions in the two regions are: 

"" /R\! - I J. i 0. 1 (r, p) =\";'j 0 01 (p) n+?(r(p/v) ) 

In+i(R(p/v) t) 
r 

+ ~ J p1 f(p)W(r"~;p)dp 
vr2 R . 

R 

+ W(r, RiP) J P~f(P)In+~(P(P/v)i)dP (22) 
vriln+i(R(P/v)i) 0 -

02(r, p) =(~) i ?i
02

(p) Kn+t(r(P/v)~ 
Kn+i(R(p/v) ~) 

r 3 

+ 3 J p~f(p)W(r, p;p)dp 
vr R 

CD 

W(R,riP) r ptf(p)K (P(p/v)i)dp 
tK (R( / )1.. n+i 

vr n+i p V R 
+ (23) 

where the tilde denotes the Laplace transformed function, p is the trans
formed variable and: 

The stream function 1Jr is determined by integration of Eq. (14) 
to be: 

1I1(r. e, t) = ~<:::) 'l'(r, t) [p n-l (cos e) - P n+l (cos e)l 

where: 

'l'(r, t) = 2~:1 [c(t) - r sn+2 0. (s, t) dsJ 
'R 

n+l r 
r rr -n+l cIt'] 

+ ZnTI -R s <1 (s,t)ds -~ (24) 

One of the integration constants has been eliminated with the aid of 
Eq. (13b) which requires: 

*In writing Eqs. (20), (21) the effect of the boundary condition (8) 
has been partially anticipated in that the separation constant has 
been set at vn(n+l) instead of that at \lk(k+l). with k an integer 
to be determined. 
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-H(R,9,t) = 0 

and the other, c(t), is determined by the regularity requirements at 
the origin and at infinity: 

R 

J n+Z 
c1(t)=- s 0l(s,t)ds (Z5a) 

o 
co 

Zn+l J -n+l cZ(t) = R s 0Z(s, t)ds (Z5b) 

R 

Now the modification to the pressure introduced by viscosity can be com
puted from Eq. (IZ) with the result: 

PI' I )n p = (ntl)v l ,i °10(t)Pn(cos9) 

Pz = -nv. £. 0ZO(t)Pn(cos9) , ~ ~ n+l 
p Z r 

In the following we shall restrict the analysis mainly to the case 
in which the initial vorticity distribution vanishes, f(r) = O. This will 
happen for instance if the oscillations start from a position of perturbed 
equilibrium with zero initial velocity. In this case the Laplace trans
forms of c(t) have the following expressions: 

~(p) 
! 

n+Z !"'" In+;' (R(p/v) ) = -R (vIp) ~jOl(P) i 
In+i (R(p/v) ) 

l. K (R(p/v)!) = Rn+Z (v/p)"2"'('l' (p) n-,. . 
02 Kn+i (R(p/v)i) 

THE EQUATION OF MOTION OF THE INTERFACE 

(l6a) 

(26b) 

We shan now apply the remaining boundary conditions and derive 
the equation of motion of the interface. From the continuity of the 
tangential velocity, Eq. (7). we get: 

In+l Rn+Z. 
c i - Cz = n(n+l) a (27) 

The continuity of tangential stresses. Eq. (8) reduces to: 

(l8) 

These two equations determine OOl(t). OOZ(t) in terms of a(t): the 
remaining boundary condition on the normal stresses. Eq. (9),plays then 
the role of a consistency condition and yields the follOwing equation of 
motion for a(t): 
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(n+l)Pl+nP2 \.12-\.11 T 
n(n+l) a - 2(n-l)(n+2)--;z a+ (n-l)(n+2) R3 a 

The set of simultaneous equations (27), (28), (29) describes the motion 
of the interface. It is a system of three linear integro-differential 
equations, which can be solved for the Laplace-transformed functions. 
The final step of inversion of the transforms, however, does n9t appear 
to be possible without recourse to numerical methods. The following 

'sections describe some approximate results. 

THE OSCILLATIONS OF A VISCOUS LIQUID DROP IN AIR 

We 'consider first the case in which the fluid occupying the outer 
region has negligible dynamical effects, so that is is appropriate to 
neglect \.I, P2 compared to \.11' P l' This would be the cas e, for 
example, 10r a liquid drop in a vacuum or in air. As was noted after 
Eq. (7), the condition of continuity of tangential velocity does not apply 
to this case, so that Eq. (27) should be neglected. Further, setting 
\.12 = 0, P2 = 0 in Eqs. (28), (29) and dropping the subscript 1, we get: 

-n-3 n-l 2 • 
2R c (t) + ° oCt) = - n it a (30) 

a + 2n(n-l )(n+2)::1- a + n(n-l )(n+2) ~ a 
R pR 

+n(n-l)(n+l) ~ 0o(t) = 0 (31) 

The quantity c(t) is given by Eq. (25a) or (26a). Observe first that by 
combination of (30), (31) one obtains: 

a+2(n-I)(2n+l) ~ a+n(n-lHn+2) T 3 a 
R pR 

R 
-n-4f n+2 + 2n(n-l)(n+l)\lR s O(s.t)ds = 0 

''0 
(32) 

If nCr, t) is so small that the last term is negligible, we can read 
directly from the equation the frequency Wo and the decay constant 'I'd 
of the oscillations: 

.. \. 
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Z T Wo = n(n-l)(n+Z) --3 
pR 

= (n-I)(Zn+l) ~ 
R 

The first of these equations is the result obtained by Rayleigh (Ref. 8) 
for the oscillations of an inviscid drop, the second coincides with. the 
expression derived by Lamb (Ref. Z, p. 640) in the approximation of 
irrotational fic)w. To proceed further it is necessary to express 0 in 
terms of a. Taking the Laplace transform of (30) and using (Z6a) one 
deduces that: 

,.... [ I ~(q)J-l '?1 (p) = _1. n-l a(p) 1 _.£ n a 
o R n qI () n+i q 

(33) 

where q = R(p/'J)~ :1= This equation shows the connection between the 
superficial vorticity and the velocity of deformation of the drop shape. 
Substitution into (3Z) and application of the convolution theorem for the 
Laplace transform yields: 

t 
.. Z -1. Z Z(.I -1 r 0 .) d a+ Td a+wOa+ t-' Td (t-T)a(T T = 0 

n '0 
(34) 

where 

A _ (n-l )(n+ 1) 
t-'n - Zn+l 

and OCt) is defined by its transform as: 

_ Z In;.i(q) 
~(p) - ZI (q) - qI (q) 

n+i n+i 

On phYllical grounds one expects the solution of Eq. (34) to have 
the form of modulated oscillations; we therefore let: 

aCt) = Ae -cr(t)t 

where A is a c:omplex constant and cr(t) a complex function of time. In 
order to bring out the relation to the irrotational oscillations it is also 
expedient to define a new dependent variable: 

u(t) = exp{-[cr(t) - O'Oltl (35) 

*It may be not.~d that the function j (q) = qI 1 (q)/I (q) is a particular 
case of modified quotients of cylirl'der funcYtlons, ~hich are treated in 
Ref. 9. 
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(where 

(36) 

is the com.plex frequency of the irrotational os cillations) so that: 

aCt) = Ae -O'otu(t) (37) 

Without loss of generality we m.ay also take u(O) = 1, u(O) = O. 
Substituting (37) into (34) and taking the Laplace transform. we find: 

(38) 

The inversion of this function appears to be a hopeless task analytically, 
and one m.ust have recourse to num.erical techniques for a full solution. 
Here we shall content ourselves with an approximate solution valid for 
sm.all tim.es and an investigation of the asym.ptotic properties for t .. a:> • 

Upon expansion of (38) in series, term. by term. inversion, and 
com.parison with (35) we deduce:!:: 

£ill. 2 {32 ~ ~ 2 ( \It )2 = 1+ (n-l) (n+l) ---r -:::'l) -3'(n-l) Z 
0'0 15'11'~ R 

32 [ ( \It ji ( \It j5J } + ~ 5(0'0t)\:z - (7n-4)(n+l) ~ + •••• 
105'11'~ R R 

(39) 

Figure 1 is a plot of the first three term.s of this equation for 
2 ~ n ~ 5. There are som.e features of this result which are worth 
noticing. The first and m.ost apparent one is the fact that the dam.ping 
factor of the system. increases with tim.e in the early stages of the 
m.otion. This characteristic is not surprising in view of the fact that 
the energy equation can be written in integrated form. as (Ref. 2, p. 581): 

(40) 

where E is the total energy of the system, V its volum.e and S the 
surface bounding V. Only the second term. of this equation is nonzero for 
an irrotational flow, and in our case it gives rise to the decay constant 

*It m.ay be of som.e interest to note that if one requires that the first 
power of tim.e occurring in (39) be as high as possible, one obtains an 
equation for 0'0 whose solution is given by (36) • 

. . ' 
,,:, 
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T d 1 
in the very first, approximately irrotational stages of the motion. 

The contribution of the first term, however, increases from zero as the 
vorticity generated at the surface (cf. Eq. 33) gradually diffuses into the 
drop, and brings about the increase in damping shown by Eq. (39). A 
remarkable characteristic of this increase is that, although it, is due to 
a diffusive process, its time dependence is not d' but only tf. This 
feature,on which the small-time accuracy of the irrotational results 
rests in practice, is produced by a canceUation between the lowest order 
contributions (i. e. those proportional to tt and't) of the convective and 
diffusive terms of Eq. (40). 

To investigate the behavior of aCt) for large values of time we let: 

-a t 
aCt) = Ae 00 vet) 

where COO is a constant to be determined in such a way that: 

lim vet) = constant 
t-+oo 

(41) 

The Laplace transform of vet) can be expanded near p = 0 with a result 
of the form: 

.... 1 
v(p)a: B +Cp 

with B, C constants. To satisfy (41) we thus must require B = 0; 
this condition, written out in full, reads: 

2 -1 2 -1 
a - 2T d a + Wo + 213 Td a 

00 00 n co 

X :: R(a Iv)i 
00 

2Jn+i (x) _ 0 
x J -Ll.. (x) - 2 J . a (x) -

n"'2" n-ra 
(42) 

which coincides with the Chandrasekhar-Reid equation. It is therefore 
seen that the res1.11t of the normal mode analysis are recovered asymptotically 
as t-+ 00. It is interesting to note that in this limit the distribution of 
vorticity inside the droplet is an equilibrium distribution which satisfies 
Eq. (19) with a va.nishing LES. Indeed, from Eqs. (33), (22), (20) one 
obtains that, as p-+O: 

,.., n-l 2n+3 rn ,.., 1 
w(r, e,p)"" - 2 n 2n+l -n+r a P n (cos e) 

R 
(43) 

which is a solution of v2w= O. It is easy to show that Eq. (42) holds 
also for an arbitrary initial vorticity distribution. We shall not attempt 
here to discuss in detail the differences between Eqs. (39) and (42). We shall 
restrict our attention to the case of initially critically damped oscillations, 

, ~ ", 

.. : .... 
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Wo = 'I'~~. for which the initial (irrotational) motion changes nature 
becoIi'ting aperiodic, i. e. to the case: 

R2 
Wo V = (n-l)(2n+1) (44) 

Chandr~sekhar (Refs. 1,3) gives a short table of the maximUIIl values M 
of Wo R Iv that give rise to aperiodic decay; values of WOR2 Iv greater 
than M would result in damped oscillations. The comparison with 
Eq. (44) is as follows: 

n = 2 M = 3.630 
2 

WOR Iv = 5 

n = 3 M = 6.026 2 
WoR Iv = 14 

n=4 M=8.457 2 
woR Iv = 27 

Therefore it is seen that, even if the motion is initially aperiodic, it 
changes nature at a certain time to become oscillatory. This circUIIlstance 
suggests very strongly that in general the damping factor corresponding 
to Eq. (42) is smaller than that given by the irrotational approximation, 
but no general proof can be furnished for this conjecture. In view of our 
result (33), one would then conclude that the effective damping factor at 
first increases and then decreases with time. 

THE OSCILLATIONS OF BUBBLES AND OF UQUID DROPS IMMERSED 
IN ANOTHER LIQUID 

The cas e in which it is the inner liquid to have negligible dynamical 
effects can be treated analogously to what was done in the preceding section. 
Setting \.11 = 0, PI = 0 and dropping the subscript 2, we obtain: 

ii- 2(n-l)(n+1)(n+2)~ a+ (n-l)(n+1)(n+2) T 3 a 
R pR 

-n(n+1)(n+2) ~ 00(t) = 0 (45) 

o (t)+ZR-n - 3 (t) - _1. ~ I-o c - R n+1 (46) 

Again eliminating 0 0, Eq. (45) becomes: 

a+ 2(n+Z)(2n+l) ~ a + (n-l)(n+1)(n+2)~ a 
. R pR 

CD 
n-3 r -n+l ) +Zn(n+l)(n+2)vR . s O(s,t ds = 0 (47) 

'R 
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from which the irrotational frequency and decay constant follow as: 

2 T 
Wo = (n-l )(n+l )(n+2) -3 

pR 

-1 v 
'I'd = (n+2)(2n+l):-z 

R 

Both these results are given by Lamb (Ref. 2, pp. 475, 640). The surface 
vorticity and velocity of deformation are found to be connected by: 

2 2 
[ 

2 Kn_:(q>]-1 '0 (p) = - - n+ 1 1+- 11: 
o R n+l q Kn~ (q) 

q = R(p/v)i 

and the final equation for aCt) is obtained in the same form as Eq. (34), 
in which the kernel is now given by: 

2K
n

_
t 

(q) 

~ (p) = - qK -Ii- (q) + 2K i (q) 
n n-

The small-time behavior of the modulated frequency O'(t) is found in the 
same way as was done before, with the result: 

~}:: 1 +n(n+2)2{~ ( v~ f _~ (n+2)(:4)2 
0'0 15'11'"2" R R 

3 6 

+ ~ [5 (O'ot) (:4 j -6n(n+2)( v~ 1J + •••• } (48) 
105'11'~ R R ' 

The similarity between this result and Eq. (39) is apparent. 

For the large-time soluti.on the same procedure applied before 
yields in this case the characteristic equation: 

I~n = n(n+2)/(2n+l) 
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After some simplifying mathematical manipulations, the result obtained 
by Miller and Scriven by means of a normal mode analysis (Ref. 5) can 
be brought to the form of Eq. (49). Again there is a striking similarity 
between this result for the bubble and that obtained before for the drop, 
Eq. (4Z). 

For the case in which both fluids have non-negligible dynamical 
effects (drop in liquid), the analysis is more complicated and also, for 
certain aspects, qualitatively different. Physically this comes about 
because the two fluids are now coupled through the no-slip boundary 
condition at the interface so that Eq. (Z7) must be used. In this case one 
finds that: 

~(ql' qZ) = Il I Cn (qZ)[ l-Z1n (ql)] + IlZ1n (q 1)[ l+ZCn(qZ)] 

q. = R(p/". >'~ 
1 1 C = K l../qzK.Ll.. n n-"2 n'2" 

The equation of motion can now be written as: 

(n+l)Pl+npZ Jt T 
n(n+l) 1+ 0 Q(t-'I")a(T)d'l" + (n-l)(n+Z)R3 a = 0 (50) 

where: 

It should be noticed that, although the irrotational frequency of 
oscillation can be read from Eq. (50) to be: 

Z (n-l)n(n+l)(n+Z) ..!.. 
Wo = (n+l)P I +npZ R 3 

(cf. Lamb, Ref. Z, p. 475), it is not possible to put (50) in a form 
analogous to (3Z) or (47). Nevertheless the irrotational decay constant 
can be determined by the method explained in the footnote on page 9 to be: 

.'. ',. 
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1 2n+l ,_~1 __ -..-

= 2R2 (n+1)p1 +npZ (IJ.Ft +lJ.rNZ')2 

X{(IJ.Z";1J.1>[Z(n+Z)~~\l1 + (2n+l)1J.11J.z-!":L\lZ' - Z(n-1)(n+1)1J.~\lzJ 
Z Z Z . 

. (Zn+l)n(n+l)(p1- PZ) 1J. 11J.Z } 

+ - PI PZ[(n+l )p 1 + npZ] 

It can be verified that this expression reduces to the ones for the isolated 
drop and bubble when 1J.2 or IJ.I vanish. The first tinae-dependent term 
in the equation for a(t) is also in this case of order to;. 

A mOl'e complete analysis will be published elsewhere. 
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Fig. 1. Small-time behavior of the complex frequency o(t) 100 for the cas e 

of a drop oscillating in vacuum (only the terms in the first line of 
Eq. (39) have been used to construct the curves). 
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NON-LINEAR EFFECTS ON DROPLET DEFORMATION 

.. 
P.G. Simpkins 

Department of Aeronautics and Astronautics 
Southampton University, England 

1. INTRODUCTION 

When a liquid droplet moves through an ambient fluid 
a natural oscillation is set up between the aerodynamic 
forces tending to distort the drop, and the surface tension 
forces seeking to restore the shape to the profile with 
minimum surface energy. A large amount of experimental 
evidence has established that when the Weber number exceeds 
a value of order unity, large deformations from the spherical 
profile occur and ultimately the droplet ruptures. During 
the deformation process the droplet develops from a disc
like shape into a canopy which resembles either a parachute 
or a parasol. Photographs of such highly distorted drops 
have been taken by Lane and Green 7 , Hanson, Domich and 
Adams 8 , Wolfe 9 and the author lO for a variety of liquids 
from water to mercury. Figures (1) and (2) illustrate 
the two types of behaviour that occur for Weber numbers 
greater than unity and are typical of pictures recorded by 
numerous experimenters. Table 1 summarizes the observations 
made of the response characteristics, and illustrates the 
uncertainty in predicting the behaviour. Whereas the 
author's data suggests the bag response occurs at Weber 
numbers below those for which the parasol is generated, the 
observations of others do not always support this contention. 
It should be emphasized that these response characteristics 
are the result of aerodynamic forces and that the droplet 
is not unstable in a rigourous sense, i.e. the distortion 
does not grow exponentially in time. An instability of the 
windward surface does occur when the induced acceleration 
of the droplet becomes very large. The resulting Taylor 
instability has been the subject of a recent paper by 
Harper, Grube and Chang. ll 

Although the occurrence of the large deformation and 
break-up phenomenon is now experimentally well-established, 
attempts to predict the incipient conditions have been 
limited to semi-empirical approaches. One of the earliest 
estimates of the critical Weber number We c was given by 
Hinze 3 who considered the two cases of large and small 
liquid viscosity. For the purpose of the discussion We c 
is taken to be that value at which the droplet ruptures. 
For small viscosj.ty fluids, Hinze compared the linear 
theory expressions for the surface displacement at the 
stagnation point to a series of experimental observations. 
By these comparisons he deduced that 6 < wee < 10 depending 
on the initial conditions applied to the drop. Such 
estimates howevel: can at best be only subjective since as 
Hinze himself notes the critical deformation, which leads 
to the breaking up of a droplet, has a value far exceeding 
that tolerable by linear assumptions. In a more basic 
approach Gordon 2 equated the energy required to displace 
a.cylindrical section from a droplet exposed to an external 
flow. To do this Gordon estimated the aerodynamic, viscous 
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and surface tension forces and combined these with the 
inertial effects to obtain an expression for time-dependent 
surface displacement. As a result,a value of we c = 8 was 
predicted. Golovin 4 (a) examined the case in which the 
external flow about the drop was assumed to be potential 
but the internal liquid motion had finite vorticity. To 
make this connection Golovin argued that the internal 
rotational motion is driven by viscous forces in the liquid 
near the interface. By equating the internal dynamic 
pressure gradient to that in the external potential flow 
he deduced the normal modes for the surface vibration of 
the above model, and a critical value of We c = 2.5. In a. 
subsequent paper Go1ovin 4 (b) eXamined the problem assuming 
a potential flow in the droplet interior. In that case, 
he deduced a value of we c : 2.2. In both Hinze 3 and 
Golovin's4 work the predictions for we c are based on linear 
theory and whereas Gordon's2 energy method implicitly relies 
on the assumption that viscous effects may be represented 
as a Poiseui1le flow. None of the above approaches ha~ 
accounted for the interaction which occurs between the 
droplet and the external flow as the distortion grows. 

Recently, calculations of the higher-order approxim
ations to the equations of motion have been perform~d by 
Harper, Simpkins and Grube 5 in which the coupling between 
the droplet distortion and the pressure distribution exerted 
by the external flow on the drop are taken into account. 
This paper will briefly review the nature of the droplet 
response in the vicinity of the critical Weber number. In 
Section 2 the linear theory will be described for the 
limiting cases of We < 1 and We »1. These limits show 
the droplet response to be vibratory and algebraic functions 
of time, respectively. Subsequently, in Section 3, the 
method of improving the estimate for the transition point 
between the two response characteristics is described. In 
Section 4 the general three-dimensional response case is 
discussed and the occurrence of degenerate oscillations is 
noted. 

2. REVIEW OF THE LINEAR THEORY 

The vibrational response of a liquid droplet about a 
spheroidal shape was originally established by Ray1eigh1 
from a linear analysis. The shape of the droplet can be 
represented in spherical co-ordinates (r, e, $) as 

n 1 + t anPn(cose) 
nco 

(1) 

where n = r/R, Pn is the nth order Legendre function of the 
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first kind, R is the radius of the unperturbed sphere, and 
the coefficients an are functions of time. Rayleigh's 
results, obtained from energy principles, showed that 
an = b n cos wnt and that the non-dimensional eigen
frequencies wn are given in terms of a modified Weber 
number by 

* n(n - l)(n + 2)/we. 

The Weber number We, which is a measure of the dynamic 
pressure force compared to the surface tension, restoring 
force, is expressed as 

We * e: We 

(2 ) 

(3) 

where £ = p/p is the ratio of the gas-liquid density ratio, 
U~ is the external airstream velocity and a is the surface 
tension. 

More generalized treatments of the droplet response 
problem have been given by Landau and Lifshitz12 and by 
Harper, Grube and Changll • The former authors have shown 
that for each of the axi-symmetric modes there are (2n + 1) 
oscillations, i.e. the frequencies are degenerate. This 
aspect will be discussed further in Section 4.- The results 
of Harper, Grube and Chang on the other hand gave an 
explicit result for the axi-symmetric response of a 
vibrating droplet, which is 

n (9, t) 1 + £ 1: 
n=o 

n(2n + 1) Pn(cos9) [coswnt _ 1] + 0(£2) 
4w2 Cn 

(4) 

n 

The coefficients Cn in equation (4) are determined from the 
external pressure-distribution on the droplet. 

An important change in the response characteristics is 
observed when cos wnt is expanded for wnt «1. In that 
circumstance the surface displacement is found to be 

n (9 ,t) 1 + £ 1: 
n=o 

122 8 n(2n + 1) Cn Pn(dos9)t + 0(£ ) (5) 

i.e. the droplet now executes an irreversible distortion which 
is algebraic in time. This limiting procedure, wnt « 1, 
is strictly not one which implies t + 0 but more realistically 
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that We +~. Therefore, it may be stated that in the absence 
of surface tension the droplet response to an external flow
field is one of continuous distortion; a conclusion which is 
implicit in Rayleigh's original result. 

To illustr~te the linearized response characteristics 
consider an external potential flow associated with a rigid 
sphere, for which the pressure distribution is given by 

Pe(e) 
9 2 

1 - ( 14) sin e 

The droplet response to such an external field has been 
established by a number of authors as 

n (e, t) 

(6) 

(7) 

This characteristic is shown in Figure (3) from which it is 
observed that the axial thickness decreases to zero when the 
normalized time t = 32.7. If instead the external flow is 
considered to be one in which flow separation occurs, then 
the predicted droplet response is altered significantly. 
Hinze 3 used a pressure distribution of the form 

P e (e) = 
9 2 

1 - ( 14) sin e o 

const 

as a means of estimating a value for the critical Weber 
number. More recently the pressure distributions on a rigid 
sphere recorded by Maxworthy 13 have been synthesized by an • 
eighty term series and used to calculate the transient 
response of a droplet. Results taken from these calculations 
are given in Figure (4). For small times the predicted 
response is in good agreement with experimental shock tube 
studies, however for values of t > 15 say the predictions 
are less realistic. This result is not unexpected since as 
the droplet distortion grows the external flow about it is 
modified. Thus, the applied pressure distribution changes 
and the assumption that it is similar to that on a rigid 
sphere is no longer valid. It is this non-linear coupling 
which will be discus$ed in the next section. A comparison 
between the two linear models described above and data taken 
from a bag-type response is given in Figure (5) where the. 
ordinate (b/a ) is the ratio of the minor to major axes. The 
data support the conclusion that fOr t < 15 the predicted 
response is good a representation of the behaviour. However, 
the predictions suggest a rate of distortion greater than 
that observed. 
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3. NON-LINEAR EFFECTS 

The previous section illustrated how, between the 
limits of We « 1 and We ~.~, the droplet response changes 
from a vibratc)ry characteristic to one which is monatonically 
deforming in time. A question that therefore naturally 
arises is, can an estimate be made of the value of the Weber 
number at which the vibrational response ceases and the 
continuous distortion begins? We use this aforementioned 
criterion as a definition for the critical Weber number, 
weco Other investigators, as has been previously noted, have 
based their estimates of we c on when the droplet ruptures. 

In examining the higher-order terms of the equation 
of motion Harper, Simpkins and Grube S have considered the 
droplet as a non-linear oscillator for which the forcing 
term represents the external air flow. The non-linearity 
in the problem causes a change in the modal frequencies which, 
when evaluated, allows a revised estimate of the surface 
displacement to be made. To reduce the algebra to manageable 
proportions the external flowfield is considered to be the 
potential flow given by equation (6) for which Pe(e) - P2(cose) 
In the higher-order approximation a regular perturbation in € 

is not uniformly'valid because of the appearance of secular 
terms of the form t sinw2t. These secular terms arise 
because the linear response to an external potential flow 
has a displacement ~ (e,t) - P 2 (cose). Thus, when in the 
higher-order approximation a forcing function proportional 
to P2(cose) is introduced it excites a P 2 (cose) mode at 
exactly the fundamental frequency giving rise to a resonant 
condition. The PLK co-ordinate stretching technique6 has 
been used to render the estimated response uniformly valid 
and the correction to the eigen-frequency is found to be 

a We 
(1 - 3.85) 

so that to first-order, the surface displacement now becomes 

~ (e, t) 

The result for the corrected eigen-frequency, equation (8), 
shows that when a : 1, i.e. We « 1, the effect of the non
linear interaction is to reduce the frequency below that of 

(8) 

(9) 

the fundamental. In the limit a ~ 0 with t bounded it is noted 
that the droplet will begin to deform continuously as the Weber 
number approaches the critical value We : 3.85. Thus the higher
order analysis yields an estimate for the commencement of the 
distortion when We - 0(1) rather than the linear result 
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of We ~ m. The reduced frequency aW 2 which develops as a 
result of non-linear effects is shown in Figure (6) as a 
function of We. 

Because of the non-linear interaction between the 
distorted droplet and the external potential flowfield the 
second-order correction to the surface displacement is found 
to be of the form 

n (2) 

(10) 

where the K's are constants to be evaluated. Two interesting 
features therefore emerge from the high-order analysis. 
Firstly, an anti-symmetric term, i.e. the P3 mode, is found 
in the surface displacement in response to an external 
pressure distribution which was initially symmetric. 
Secondly, as We increases through we c the sign of a changes. 
This sign change affects only the anti-symmetric P3(cose) 
mode because the symmetric modes only contain terms in 
cosawnt and their higher harmonics. Consequently as We 
passes through the critical value the droplet response 
changes. In the potential flow model under discussion it 
would in effect appear as though the freestream direction 
had been reversed. 

4. DISCUSSION 

It is of interest to consider briefly the more 
general treatment of the response described by Landau and 
Liftshitz12. Let the deformed surface be described in terms 
of the spherical harmonic functions Ynm(e,~) as 

r 

where 

R + £ e 
-iw t n 

Ynm(e,~) (11) 

(12) 

:,". : 

.- ~ , 1: . 

' .. " . 
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m and Pn(e) are associated Legendre functions of the first kind. 
Then for each mode n of the eigen-frequency wn there are 
(2n + 1) different oscillations corresponding to m = 0, +1, 
+2 ••••• +n. The oscillations are therefore degenerate,-since 
at any particular eigen-frequency there is more than one 
oscillation which satisfies the first-order equations of 
motion. Since both +m give rise to the same oscillation there 
are, however, only (n + 1) independent oscillations. Thus, 
for the fundamental n = 2 mode, there are three independent 
oscillations, (i) the axi-symmetric P2-mode, (ii) an anti
symmetric P2-mode and (iii) a symmetric p~-mode. The latter 
three-dimensional modes are tabulated in standard texts 14 ,15 
and shown in l!"igure (7). The P~-mode gives rise to a trans
verse oscillation which wavers about an axis through the poles 
in ~e manner shown in Figure (7). Since the nodal line is a 
great circle through • = n/2 zero displacement occurs when 
e = tn/2. The P~ modal response is more complicated since 
the nodal lines are in planes normal to the equator through 
• = +n/4. The projected profile in the equatorial plane 
therefore resembles an ellipse whose major axis oscillates 
between two normal directions parallel and perpendicular to 
the freestream velocity vector. The occurrance. of this P~ 
mode is of interest since it illustrates that the droplet can 
seek to become distorted in a direction parallel to the 
freestream. 

When the non-linear effects are taken into account it 
i~ found that even for just a P2-mode in the external flow, 
the droplet response is excited not only in the w2 eigen
frequency, but also in w3 and w4~ Thus additional degenerate 
oscillations occur each associated with the higher-order 
eigen-frequencies. Of the modes established by the non
linearity, those associated with the P~ and p1-modes are of 
most germane to this discussion. These modes, whose 
characteristics are similar to p~, intensify the droplets 
inclination to become extended in the vicinity of the 
stagnation point. At the same time the region over which 
this extension occurs becomes more restricted in e as the 
number of nodes increases with m. Whether the occurrance 
of the degenerate oscillations is the reason for the two 
types of response observed beyond the critical Weber can only 
be conjecture at this time. It is however noteworthy that 
both the bag and the parasol responses have been recorded 
by different experimenters at approximately the same Weber 
numbers. 

5. CONCLUSIONS 

The following remarks summarize the principle points 
of this paper .• 

(i) Solutions of the second-ordezequations of motion 
show that for an external potential flow the fundamental 
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eigen-frequency is reduced by an amount [1 - (We/3.8S)] as 
a result of the non-linear interaction between the droplet 
and the freestream. 

(ii) The non-linear analysis suggests that the 
transition from the vibratory to the algebraic response occurs 
at about We c ~ 3.85. 

(iii)The appearance of higher-order modes in the 
predicted surface displacement introduces a number of
degenerate oscillations each associated with a particular 
eigen-frequency. Specific m~des of some of these degeneracies 
have the effect of causing the stagnation point on the droplet 
to become elongated. -These degenerate modes may give rise to 
the observed effects beyond we c where two types of response 
occur whose characteristics resemble (a) a bag, and (b) a 
parasol. 
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Authors Liquid Response We Experiment 

Bukhman 16 
Water Bag 2.3+0.4 Steady air jet 

Ethyl alcohol " ii " " " 
Glycerin " " " " " 

Methyl benzene " " " " " 

Hanson et a18 Water Bag 3.6-6.B Shock Tube 
Silicon Oil " 6.5-10.5 " .. 

Lane Water Bag 11 Wind Tunnel 

Lane & Green7 Water Bag 5.2 Wind Tunnel 

Margaivey & Taylor 17 Water Bag 6.0-6.2 Free Fall 

SimpkinslO Water Bag 10-17 Shock Tube 

wolfe9 Water Bag 3.B Shock Tube 

Hanson et alB Water Parasol 6.B-9.3 Shock Tube 
Silicon Oil Parasol 7-10.4 " " 

Simpkins 10 Water Parasol 30-45 Shock Tube 

wolfe9 Mercury Parasol 4.3 Shock Tube 

'.L'ABLE 1 

Observations of Large Deformation Characteristics 

and their corresponding Weber Numbers 
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FIG. 3. 
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u .. -..... 

DYNAMIC RESPONSE TO THE PRESSURE DISTRIBUTION ON A 

RIGID SPHERE, R~. 2 x 105 

FIG. 4. 
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DEFORMATION AND BURST OF SINGLE DROPS 

IN A VISCOUS FLUID * 
Andreas Acrivos 

Stanford University, Stanford, California 94305 

ABSTRACT 

The motion of sma1l drops in a viscous fluid is considered theoret-

ica1ly and experim.mtally. Two cases are examined in some detail: drops 

moving steadily in a quiescent fluid, and neutrally buoyant drops freely 

suspended in a linear shear field. Theoretical expressions are presented 

for the shapes of these drops, and these are compared with the available 

experimental data. The conditions under which bursting of drops is expec-

ted to occur, plus the application of the basic data involving single drops to 

the interpretation and prediction of the dispersion performance of static 

mixers, are also discussed. 

INTRODUCTION 

Flow phenomena, which involve the motion of drops and bubbles in 
viscous liquids, are known to occur frequently in nature and to play an im
portant role in many processes of physical interest. Familiar examples, 
taken from different branches of engineering, include: agitation induced by 
bubble motion, the removal of carbon monoxide in Open Hearth Steelmaking, 
mass transfer from a dispersed liquid phase into another as in liquid-liquid 
extraction, lift pumps, the flow of emulsions whose non-Newtonian charac
teristics are often very striking, thE! dispersion and mixing of one vis cous 
fluid into another, and many more. Although these systems are, in general, 
much too complicated of course to permit their quantitative theoretical 
description, many of their basic features can be modeled, sometimes to a 
surprisingly accurate extent, by considering the detailed behavior of the in
dividual drops in the two-phase mixture. Thus, for example, the efficiency 
of a liquid-liquid extraction contacting device is closely related to the rise 
velocity of the liquid drops comprising the dispersed phase, while the dis
persion performance and power requirements of static mixers are strongly 
affected by the breakup characteristics of single drops in a shear field. 
Thus, the flow past single drops and bubbles is a subject not only of consid
erable academic interest but also of potential practical applicability to many 
diverse processes in engineering and science. 

* Work supported in part by the National Science Foundation. 
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In what follows, we shall review briefly some of the more important 
theoretical and experimental results pertaining to two areas of the above 
field: (a) drops moving steadily in a qufescent fluid; and, (b) neutrally 
buoyant drops freely suspended in a linear shear flow. Only the case of 
laminar motion will be considered. 

THE RISE VELOCITY OF BUOYANT DROPS 

Harper [1 J has already presented an excellent and detailed review of 
this subject, and hence we shall restrict our discussion to some of the high
lights. 

The basic relation which determines the terminal velocity of a single 
drop is the simple force balance 

drag = ¥ a 3g (p _ pi) (1 ) 

where!. is the known equiva.lent radius of the drop, g is the gravitational 
constant, and p and pi, are the densities of, respectively, the continuous 
and the dispersed phase. Thus, in contrast to many of the classical prob
lems in fluid mechanics, the drag is given while the velocity of translation 
of the body is the unknown. Of course, this is not the main complicating 
feature; rather it is the fact that the shape of the drop cannot be specified 
!. priori, but needs to be obtained as part of the overall solution. 

The problem to be solved can, therefore, be stated as follows: One 
seeks a solution to the appropriate Navier-Stokes equation, in the region 
both inside and outside the drop, which leads to finite velocities everywhere 
and which satisfies the boundary conditions: 

i) At infinity, u. -+ U 6. 3 
1 1 

ii) On the surface of the drop: 

a) u.n. = 0, u. = u.' 
1 1 1 1 

b) (~j - C1 ij) nj = "ni a ~/a~ 

(2) 

(3) 

(4) 

where x. is a position vector with origin at the center of mass of the drop, 
eS. 3 is a 1 unit vector parallel to the gravitational acceleration, u. is the ve
ldcity vector, U is the unknown terminal drop velocity, n. is the1 unit outer 
normal to the surface of the drop, a .. is the stress tenso~ and" is the inter
facial tension. All primed symbols lJ refer to quantities within the drop. 
Also, we shall limit our discussion to systems with clean interfaces; i. e. we 
shall not consider the effects of surface active agents which are known to play 
an important role in some cases when the drop is small [1,2 J. 

In spite of the rather simplified nature of the problem as stated above, 
an exact solution cannot be obtained in general except through laborious 
time-consuming finite-difference numerical computations. It is instructive, 
therefore, to examine some special cases. 
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To this end, let us consider the case of a gas .bubble rising in a New
tonian liquid. Here pI «p and f.L I « f.L, with f.L being the viscosity. Hence, 
the independent parameters of the system reduce to the following six: U, a, 
'g, p, IJ. and 'Y' which can be combined into the three independent dimension
less groups 

2 
W ;: apU I", 4 3 

M :; gIJ. Ip'Y 

where R is the familiar Reynolds number and W is the Weber number. It 
should be noted that, of these groups, only M depends exclusively on the 
properties of the liquid medium, while Rand W depend on both the size and 
the velocity of the bubble. In fact, since 'Y and p do not vary greatly from 
one system to another, ~ is effectively proportional to IJ. 4. 

In some respects, in the case of rising bubbles, the use of Rand W 
is somewhat awkward at times because, in contrast to most of the classical 
problems in hydrodynamics, U and a are not independent entities since, for 
a given bubble size, the rise velocitY must adjust itself so as to maintain the 
proper balance between the buoyancy force and the drag acting on the bubble. 
Thus, U is seen to depend on a as well as on the physical properties of the 
system. -

Particularly simple expressions for the rise velocity U e:x:ist when 
the equivalent radius!. is either very small or large. In the former case, 
typically for a < 1()-2 cm., the bubble is spherical, owing to the small value 
of W, and inertia effects are negligible because R «1. Thus, by solving the 
creeping flow equations one obtains the well-known result, first derived by 
Hadamard and by Riabouchinsky (1, 3 J. 

U = a 2gp/3f.L • (5) 

At the other extreme, i. e. when a typically exceeds 1 cm .• the 
Reynolds number is large and the surface tension forces negligible. Then, 
as first shown by Davies and G. I. Taylor [1,3 J, the bubble assumes the 
shape of a "spherical cap" and its I'ise velocity is given by 

U = 1.02;ga • (6) 

The subject of spherical cap bubbles has recently been reviewed by Wegener 
and Parlange [4J. As shown by Haberman and Morton [5J, among others, 
(5) and (6) are in very good agreement with experimental data provided that, 
as mentioned earlier, the bubble surface is clean. 

In contrast to the simple asymptotic expressions (5) and (6), the U vs. 
!. curve in the intermediate regime is somewhat more complicated and assumes 
one of two possible shapes depending on whether M is large or small. Two 
such representative curves are shown in figure 1. 

Large values of M (M > 10- 3) typically correspond to very viscous 
liquids. Consequently, when.! becomes sufficiently large for the bubble to 
deform, the Reynolds number is still small enough for an analysis based on the 
creeping flow solution to apply. Thus, as shown by T. D. Taylor and Acrivos 
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[6], an expression for the deformation of the bubble can be obtained, when 
both Rand Ware small, by means of a perturbation solution of the Navier
Stokes equations. Actually, since the appropriate creeping flow solution 
automatically satisfies the normal stress balance in (4), the deformation here 
results from the effects of inertia forces; but since, as is well known, the 
'creeping flow solution does not lead to a uniformly valid approximation of 
the flow far from the bubble, the analysis cannot proceed via a regular per
turbation. Rather it requires that the method of matched asymptotic expan
sions be employed for this purpose. The resulting expression for the bubble 
shape including the additional two terms recently obtained by Brignell [7] is 

(7) 

where P and P 3 are the appropriate Legendre polynomials and e is the 
azimuthJJ. angle measured from the downstream direction. Thus, as can 
easily be seen from (7), the bubble first deforms into an oblate spheroid 
and then, following a further increase in!!:, into a shape approaching that of 
a spherical cap. In fact, it is a simple matter to demonstrate experimental
ly that the transition from a spherical bubble to a spherical cap is a gradual 
one and that the corresponding shape of the U vs. a curve for liquids with 
larger values of M is, typically, as shown in figure 1 for mineral oil. 
Hayashi and Matunobu [8] have experimentally verified the Taylor-Acrivos 
[6] expression for the deformation of drops as well as bubbles when Rand W 
are small, while Wellek, Agrawal and Shelland [9] have reported that this 
expression seems to hold for substantially larger values of a, and, there
fore, of Rand W, than would be expected on the basis of the-theory. 

A very different state of affairs is encountered, however, when M is 
small, i. e. less than approximately 10-10• Low values of M.are, of course, 
indicative of low viscosity liquids and hence it is quite possible that small 
(and, therefore, spherical) bubbles can rise fast enough for the Reynolds 
number to be large. To a good approximation then, the vorticity is confined 
to a thin boundary-layer at the bubble surface plus in a narrow axisymmetric 
wake, and the flow outside this region is effectively inviscid. Moreover, as 
Levich [Z] was the first to recognize, the rate of mechanical energy dissipa
tion in the liquid can be determined, at sufficiently large R, from the irrota
tional flow alone, and, therefore, an expression for the drag can be obtained 
without a detailed analysis of the boundary-layer. Levich's result is 

Z 
U = a gp /9jJ. , (8) 

which is identical to (5), the corresponding creeping flow expression, except 
for a numerical factor. By considering the dissipation in the boundary-layer 
and in the wake, Moore [10] corrected (8) for the effects of a finite Reynolds 
number and showed that, to a first approximation 

U = ~ [1 +1.6 R- 1/ Z+O(R- S/ 6)] 
9jJ. 

(9) 

The most remarkable thing about the corresponding U vs. a curve, such as 
the one shown in figure 1 for turpentine, is the appearance "7>f a local maximum 
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in the rise velocity when a is still quite small. For a while, it was believed 
that this resulted from the presence of instabilities at the gas -liquid inter
face, which have been observed experimentally [11] and predicted theoret
ically [12] to occur at values of W between 3 and 4. Moore [13] has shown, 
however, that this instability is probably not the m.ain cause for the existence 
of this velocity maximum., but rather the fact that beyond a certain radius a 
the bubble rapidly begins to deform into an approximately oblate spheroidal 
shape, the drag of which increases with a faster than a 3, the corresponding 
rate of increase of the buoyancy force. Moore's [13] analysis, later refined 
by El Sawi [14), consists of an irrotational inviscid solution for the flow ex
ternal to the bubble approxim.ately satisfying the normal stress balance' at 
the gas -liquid interface, which, as seen in figure 1, is in excellent agreement 
with the experimental points in the region where the local maximum rise ve
locity occurs. This theory also predicts the existence there of a maximum. 
Weber number above which the symmetric shape is impossible. It is of in
terest to note that this maximum value of W, approxim.ately equal to 1.6, is 
almost exactly the same as that of the critical Weber num.ber obtained by 
Hartunian and Sears [12] for the onset of instability. 

The discussion presented above has been primarily limited to bubbles. 
The case of a liquid drop rising in ilnother fluid with which it is immiscible 
is not very different although, of course, the presence of viscous effects 
within the drop complicates both the analysis as well as the interpretation 
of the experimenta.1 results. For example, the extension of (9) to drops of 
low but finite viscosity requires a complicated analysis of the motion within 
the discrete phase [15] which has not been extended, as yet, to non-spherical 
systems. Also, drop shapes have been reported which have not been ob
served in the case of bubbles, e. g. spherical drops deforming into prolate 
spheroids [8J. Thus, the subject appears to be in need of further study. 

DROPS FREELY SUSPENDED IN A LINEAR SHEAR FIELD 

This case differs from that discussed earlier in that the drops are 
now neutrally buoyant, i. e. force-free and couple-free, in a linear shear 
field. Thus, relative to a set of axes that move with the center of the drop, 
we have, in lieu of (2), that: 

At infinity, ( 10) 

where w. and e .. denote, respectively, the vorticity and rate of strain tensor 
of the un\iistur6~d shear flow. 

G. I. Tayl()r [16 J was the first to study this problem both theoretically 
and experimentally for the case of creeping flow. He showed that, for the 
simple shear flow 

at infinity, (11) 

and for k ;;; ,,/fJ. Ga » 1 and ~ ;;; fJ. '/fJ. = 0(1), the drop would deform into an 
ellipsoid with semi-axes a(l-D), a, a(l+D), where 
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D = 19 6 + 16 k- 1 
16 6 + 16 (12) 

Taylor showed moreover that, under these conditions, a = .,,/4 where a is 
the angle between the major axis of the ellipsoid and the 2-axis. He also 
considered the case of a very viscous drop, i. e. ~» 1 and k = 0(1), for 
which he found that, again for the simple shear flow (11) 

5 
D = -46 and IV = .1[ 

.... 2' (13) 

In his analysis, Taylor solved the creeping flow equations for a 
spherical drop and then obtained (12) and (13) from the normal stress com
ponent of (4). Thus, this case is, in at least one respect, simpler than the 
corresponding problem of the distortion of a rising drop discussed earlier, 
in that an expression for the deformation can be obtained here without the 
need to consider inertial effects. 

COX [17J placed Taylor's 'theory on a more systematic basis. He ex
amined the general problem of a drop in both steady and unsteady J.inear 
shear flow for all circumstances in which the drop deformation is small 
and presented a scheme for extending the analysis to higher order in k-r or 
A -1. For the 'simple shear flow (11), Cox found that, at steady-state, 

D = 5(19 A + 16) ." 1 -1 / a = '4 +z: tan (196 20k) (14) 

which reduces to (12) and (13) under the appropriate conditions. 

A number of very significant experimental studies have also appeared 
which have extended the range of Taylor's earlier measurements. Due to 
experimental limitations, all these have been performed either in the simple 
shear flow (ll)--which can easily be generated in a Couette device--or the 
hyperbolic flow 

(15) 

of Taylor's four-roller apparatus. Of particular interest are the experiments 
of Rumscheidt and Mason [18], who studied the deformation and breakup of 
liquid droplets, of Torza, Cox and Mason [19J, who examined the influence' 
of time effects, and of Grace [20J who conducted a thorough experimental 
investigation of the phenomena associated rith deformation and burst over 
the record-breaking range of A's from 10- to 103• All these studies have 
yielded some extremely interesting results. First of all, they have con
firmed Taylor's and Cox's analyses for small deformation; they have also 
shown that, under certain conditions, drops can deform, seemingly indefinitely, 
with an increase in the strength G of the shear rate and end up as filaments, 
whereas, under another set of circumstances, they will deform only to a 
moderate extent and then burst. This is illustrated in figure Z, where the 
experimentally determined value of the parameter k- l required for burst is 
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plotted vs. l. for both simple shear and hyperbolic flow, and in figure 3 which 
depicts the corresponding value at breakup of t /a with t being the half
length of the drop. 

Knowledge of the conditions for breakup would be extremely useful 
in many practical situations. For example, it would allow one to estimate 
the rheological properties of an emulsion which are known to be sensitive 
functions of the average size of the droplets comprising the discrete phase. 
Also, as shown by Grace [20 J, the basic data regarding the behavior of 
single drops in shear fields can be used successfully to predict the disper
sion performance and the power requirements of a class of static mixers. 
In this context, it is undoubtedly useful to know that, as shown in figure 2, 
an irrotational shear field is more efficient, for the purposes of mixing two 
immiscible viscous fluids, than a corresponding simple shear, and that, for 
l. > 4, it would be very difficult if not impossible to mix two fluids in a 
Couette device, no matter how large the strength of the impressed shear. 
Evidently then there is a pressing need for a theory which would explain and 
quantitatively predict the phenomenon of burst. 

Although such a general theory is not yet available, a promising 
start in this direction has recently been made by Barthes -Biesel and Acrivos 
[21 J and by Buckmaster [22,23 J. The first authors succeeded, after much 
labor, in obtaining an additional term O(k- 2) in the solution of COX [17J and 
showed that this truncated series could model the experimental results of 
[18J, [19J and [20J often to a surprising degree of accuracy. This is illus
trated in figure 4 which shows, according to the analysis by [21], that be
yond a certain value of k- l , no steady shape can exist for that particular 
set of conditions (the upper branch of the theoretical curve was found to be 
unstable to small disturbances [21 J). Curves, similar to those of figure 4 
were also computed for a variety of flows and values of l. [21, 24], all of 
which tend to suggest that the breakup of a droplet freely suspended in a 
shear field results not from an instability, but rather from the absence of a 
steady-state soluti.on to the appropriate system of equations beyond a cer-
tain critical value of k- l • The analysis of [21J is still rather incomplete, of 
course, in that it c:onsists basically of a two-term expansion about a droplet 
whose shape is assumed to differ slightly from that of a sphere. Conse
quently, it cannclt describe elongated drops and, indeed, its predictions have 
been found, at times, to be inaccurate and, on occasion, erroneous [2lJ. 
Nevertheless, it ill believed that Barthes-Biesel and Acrivos' theory correctly 
models the essential physical aspects of the phenomenon even though it is 
still in need of con.siderable improvement for the purpose of yielding relia-
ble quantitative predictions. 

In contrast to [21 J, Buckmaster's analysis concerns a slender drop
let, the shape of which he determined using the techniques of slender-body 
theory [22,23 J. Buckmaster's results are therefore exact, in an asymp
totic sense, for very slender droplets, although unfortunately they are 
limited, at present, to the case of axisymmetric flows where comparison 
with experiments is not possible at this time. Nevertheless, both the re
sults and the approach are valuable and inte.resting. 

In his first paper [22], Buckmaster considered an invis cid bubble and 
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showed that its shape was given by 

r(z) = -X. _1 [1 _ (~)2n] 
GIJ. 4n " 

(16) 

where z is the distance along the axis of symmetry from the center of the 
bubble and n is an unknown integer. Thus, Buckmaster obtained a family 
of solutions although he reasoned that the one corresponding to n = I was 
probably the most realistic. This was confirmed by Youngren [25] who ex
pressed the solution of the appropriate creeping flow equations in terms of 
an integral involving a distribution of singularities along the surface of the 
bubble, the strength of which he then determined through a numerical solu
tion of the appropriate integral equation while, simultaneously, adjusting the 
shape so as to satisfy the normal stress balance. Youngren's numerical 
results are shown in figure 5 and are seen to conform to (16) with n = 1 even 
when the slenderness ratio ')I/4G .... 1. is far from small. This observation 
increases of course the potential usefulness of slender-body theories when 
applied to such problems. 

Buckmaster [23] also considered the corresponding problem for a 
drop having a small but finite viscosity and showed that 

(17) 

where 

K = -L ,-l/Z 
- G .... 1. 1\ • 

Evidently, since a solution exists only if K> 8, the condition K = 8 yields a 
criterion for burst which is qualitatively siiililar to that of [ZlJ in the sense 
that breakup has been associated with the absence of a steady state solution 
when GIJ.a/')I exceeds a certain critical value. 

This then appears to be the state of affairs regarding this interesting 
and important problem. Clearly, a more general and comprehensive theory 
would be desirable, and it is hoped that the analysis which, up to now, appears 
to have been limited to creeping flows, could also be extended to cases of 
finite or even large shear Reynolds numbers, Gpa 2/!l' Experiments at 
higher Reynolds numbers would also be welcome. 
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PRESSURE WAVES IN BUBBLY LIQUIDS 

L. van Wijngaarden 
California Institute of Technology 

.. 
ABSTRACT 

A bubbly liquid is a compressible fluid and therefore any compression 
wave of finite amplitude will tend to steepen. There are various 
mechanisms, which oppose this. Discussed are three of these: 1) Dis
persion, caused by volume oscillations of the bubbles; 2)Dissipation 
of thermal and viscous nature; 3) Relaxation caused by relative motion 
between bubbles and liquid. Depending on which of these dominate, the 
structure of the shock wave takes a different form. Examples, taken 
from systematic experiments are shown. A brief account is giyen of the 
theoretical considerations, which enable to explain the observed shock 
wave forms. 
In this talk I would like to review some of the features of pressure 
waves in bubbly liquids, as they appeared during research by Dr.L.Noordzij 
and myself in recent years. Details may be found in the references cited 
at the end. For convenience we restrict ourselves here to spherical bubbles 
with radius R, locally, and initial radius Ro.The fluid phase has constant 
density Pf' the gas in the bubbles however is compressible. The mixture 
has, when the number density of the bubbles is n, a density 

P = Pf (l-S) , 

where S is the concentration of the gas by volume, 
4 3 

S='3 T1IlR • 

When a pressure wave passes through the mixture the bubbles execute 
volume oscillations. Free volume oscillations have, under adiabatic 
circumstances, the frequency 

(1) 

(2) 

(3) 

where y is the ratio between specific heats of the gas. At frequencies 
nruch lower than ~, the pressure inside the bubbles equals the local . 
pressure p in the fluid and when in addition the bubbles move locally 
whith the fluid, the velocity of propagation of sound waves is, for 
small S, given by 

c = (lE...)1 (4) 
o PfS 

'Permanent address: 
Technische Hogeschool Twente, Enschede, The Netherlands. 
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For very small bubbles, radius ~10-5m, the changes in pressure are 
isothermal, and c is y-! times the value of (4). 
At frequencies cO@parable with ~ the pressure in the gas no longer 
equals the pressure in the bubbl~s due to the inertia of the fluid 
accelerated or decelerated in radial direction as the bubbles execute 
volume oscillations. As a result dispersion occurs and the waves travel 
with a speed less than c , the difference with c becoming larger when 
the frequency approachesow • 0 
Damping of these pressure ~aves is provided by several dissipative 
effects, the main one being thennal conduction frem the gas into the 
fluid. For waves of finite amplitude the above mentioned items provide 
interesting phenemena. Just as in ordinary gas dynamics compression 
waves are steepened because in a compressed part of the wave the speed 
of sound is lal'ger than in an expanded part. Dispersion tends to spread 
the wave because high wave number parts of the wave travel slower than 
low wave number parts. The two opposing effects may balance in waves of 
pennantent fonn, analogous to cnoidal waves on water of finite depth D J . 
No shock waves are possible without the additional help of some dissi
pation. Includ~$ this by a logarithmic decrement 6 of linear waves, we 
find (see e.g. [2J) for the pressure disturbance p=(p-p )/po in a wave 
that travels in x-direction, 0 

~ _ ~ ~ 3 ~ 6c 2 2~ 
!E. + c !E. + c p ~ + ! Co U _ ! _0_ LE =0. (5) 
at 0 ax '0 ax ~2 ax3 ~ ax2 

It is understood that the wave is of moderate amplitude and (5) con
stitutes an approximation of one order beyond the linear (acoustic) 
approximation. In equation (5) the third tenn on the left hand side re
presents the nonlinear steepening, the fourth and fifth tenns represent 
dispersion and dissipation. respectively. Equation (5) has stationary 
solutions in the fonn of an undular bore, that is a steep rise of the 
pressure in front followed by oscillations about the equilibrium pressure 
at the backside. These ~e of pressure waves were found indeed in ex
periments reported in £.3J. lID example is shown in Figure 1. 

'.'"."' .'. • .1.~ ',;." .:. ," 

Figure 1. Shock wave of 
undular bore 
type (A shock) 
P1/Po =1.79, 
60 =3.21%, -
Ro=1.33x10 3m• 

U=66m/s, -2 
dA=3.3x10 m 
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These experiments were carried out in a shock tube of about 1 meter 
length with air bubbles of about 1 mm radius in a aqueous solution of 
glycerine. The thickness of the wave, for further reference denoted 
with dA, follows from balancing the nonlinear and the dispersion term 
in (5) and is 

d 0: Ro • 

A {SO(P1/Po-1) P (6) 

When p is the pressure ir. front and P1 the pressure at the backside 
of theowave, we can also calculate the speed of propagation of this 
shock wave. The result is 

U2 1 P1/Po-1 
C
o
2 = y 

l-(P/P,) y 

for adiabatic bubbles, and 

J -, p, 
Z=Y -
Co Po 

(7) 

(8) 

under isothermal conditions. 
Figure 2, taken from (3), shows good agreement with (7), in accordance 
with the expectation that at a typical frequenCYU/dA the penetration 
depth of heat is small with respect to Ro' 

JS 

I.S 

1(.,1.1.,,"" 

Figure 2:Speed 
of A shocks. 
o:experiments. 
-Theory ,for 
adiabatic and 
isothermal 
bubbles res
pectively. 
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After the experiments of (3 J were carried out. we buH t a longer shock 
tube. as depicted in Figure 3 and observed that shock waves. initially 
(in part A) of the form of Figure 4a.just described. took a different 
fonn lower in the tube either of the fonn B shown in Figure 4b or of 
the form C in Figure 4c . 

seat air region 

AJ-

B 

c /'" 

Figure 3: Experimental setup. 

". " 
'.1'.,',..' 

to vacuum pump 

shock tube 

nri:r:ture 

transducer 

.L..::j~1'F- section for photograph";~i . 

the bubbles 

air supply 

Figure 4: This Figure 
illustrates 
the different 
shock struc
tures obser
ved in the 
laboratory. 

a) A shock • 

• 
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b) B shock. 

, . 
. 1. ~ __ .L.j . .l.. 

, 
... L . 

c) C shock. 

The remainder of this talk is on this gradual chan.,ge of A shocks into B 
or C shocks and is a very condensed version of C4J, which is shortly to 
appear. The clue to the tmderstanding of the change in shock structure 
is provided by looking at the relative motion of the bubbles with respect 
to the fluid. When a fluid containing bubbles is instantaneously accele
rated to a velocity u, the bubbles acquire a velocity 3u, approximately. 
In the absence of viscosity the bubbles continue to move at this velocity. 
When the fluid is viscous the bubbles are gradually slowed down to the 
fluid velocity. The time this process takes depends on the magnitude of 
the viscous force and on the virtual mass of the bubbles. For spherical 
bubbles the virtual mass is!p times the bubble volume and, adopting the 
Levich model for the flow aro~d the bubble, the viscous resistance is 
12n~R times the relative velocity ; ~ is the dynamic viscosity of the 
fluid. 



The relaxation time T then is 
2 

T = R Pf 
T8il 
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(9) 

For deformed bubbles both the virtual mass and the resistance increase 
severely with the defonnation but, surprisingl~ ~nough, T remains vir
tually unchanged for not too large defonnation~4J.When a pressure wave 
in the fonn of a step function enters the mixture at t=o,the mixture 
reacts for times t«T as if the fluid were inviscid. The bubbles are 
free to move relative to the fluid and the velocity of sound is not as 
given by (4) but is 

c~ = c~ (1+26
0
). (10) 

The sound velocities c2 and c~ lnay be compared with the equilibrium and 
frozen sound speeds in°chemically reacting gas flows. In part A of the 
shock tube of Figure 3 viscosity does not yet resist relative motion and 
the shock is of the undular bore type, however with cf in stead of c • 
The expression. for the speed of the shock wave is 0 

If 1 Pl/Po - 1 { Po 1 ~ 
--- = - - 1+6 (1+ -- )Y (11) 

2 Y 1 0 Pl ' 
Co 1-(po/Pl)Y 

but the effect of 6 , (as compared with (7)), is too small to be 
measurable at value~ of 6 of a few percent. 
For times t comparable w:i£h T or, in tenns of distance, at distances 
along the tube of order cfT, viscous forces tending to decrease the 
relative velocity become Important. ~ey h~ve a diffusive action on the 
wave. with a diffusion coefficient T (cf - c ). This diffusion resists 
nonlinear steepening and may, at low enofigh pressure ratios, even 
completely balance the nonlinear steepening. When this happens, the pro
file of the wave is smooth. The wavelets in the front of the wave can at 
maximum travel with the speed c • The speed of the wave is given by (7), 
whence by expanding (7) for smah values of p,lPo -1, we find for the 
threshold of these smooth waves 

4Y6
0 = 1+ -1-y+ (12) 

Indeed for values of P1/P satisfying (12), completely smooth waves, 
C waves, were found in thg lower section of the shock tube. An example 
is shown in Figure 5· The thickness of these waves is much larger than 
dA• We find 

d "'UT 
C (13) 
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-3 Figure 5. An example of a C shock. p}/p =1.07. 6 =4.17%. Ro=1.15xl0 m. 
U=65 mls. d. =2.1 m. 1+46 y y+9= 1.1. 0 c 0 

which is in our experiments. with U=102 mls and T=10-:~. of the order of 
magnitude of 1 m. whereas dA is typically of orderb 10m. There remain to 
consider the type of shock waves shown in Figure 4 which we denote with 
B shocks. They can be explained as follows: when the distance along the 
tube is comparable with or larger than UT, diffusion is active but no 
smooth profile is possible when p,/po exceeds the value given in (12). 
Therefore the shock has a thin front. of order d , of the A type. At this 
front the pressure rises to a value in between pA and p. We denote this 
pressure with ~ The remainder of the pressure iRcrease takes place over 
a distance of order UT over which nonlinear steepening is, as in C shocks. 
in balance with diffusion by relaxation. The value of ~is fo~d by obser
ving that the thin front shock nrust obey equation (11), with p in place 
of Pl' whereas the whole wave obeys equation (7). Equating the righthand 
sides of these equat.ions. with t1' in stead of P1 in (11) • gives for the 
quantity 1t 

p-p 
F = ~ , (14) 

Pl-Po 

the expression 1 
F = 1-6 l+(piPl)Y 

o .r.:! . 
l_U2 (piPl) Y 

c 2 ' o 

(15) 

Qualitatively the fo:nn of the B shocks may therefore be interpreted as a 
thin front governed by the balance between nonlinear steepening and dis
persion followed by a much thicker region where steepening is resisted by 
relaxation. 
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In figure 6 an example of a B shock is given. Quantitatively a check on 
the theory is possible by comparing the experimental data for F with the 
theoretical result (15); This is done in Figure 7. 

F 
-1 .;" .. ~----------------=.=:--= 

/' --'-'-'-
I,,,/" 
I /0 

o 

Figure 6. Pressure re
cording of a 
B shock. 
p,rfPo= 1.81, 

8
0
= 1.17%, 

Ro= 1.07x10-3m, 

U==108 mis, 
-2 dA= 4.3xlO m, 

~=O.54 m 

Fexp=O.61. 

I I 
.J" ' , 1.1 0 

10
/ , , 

1/ 
t ) , 

Figure 7. The quantity F (equation 14) as a flD1.ction of P1/P with 8 
as parameter. 0 0 

- - .- - - - - theory; 0 exp, 8 = 0.87 x 10-2 

-.- .... -.-.-.-. " ;. exp, sO= 3.1 x 10-2 
The solid line gives for compa~ison the values for F when 
thermal relaxation were dominant. 

':\i 
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The broken lines correspond to constant values of So.The solid line in
dicates the behaviour of F when relaxation of thermal nature were the 
dominant process. In that case the equilibrium and frozen speeds are 
Coy-! and co' Smooth profiles would occur below the pressure ratio 

(16) 

Figure 7 shows that thennal relaxation cannot be ruled out in our ex
periments. but the fact that we found no C shocks in the range of pressure 
ratios between y and 1+4y$ /1+y indicates the predominance of relaxation 
associated with relative ~otion. 

1 Wijngaarden, L van 
2 id. 
3 id. 

J.Fluid Mech. 33,465,1968 
Ann.Rev.Fluid Mech. 4,369,1972 
Progr.Heat and Mass Transfer 6,637,1972 

4 Noordzij L, Wijngaarden L,van J.Fluid Mech. to appear. 
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MODELS OF SPHERICAL-CAP BUBBLES 

R. Collins 

Department of Mechanical Engineering, University College London. 

INTRODUCTION 

From the close correspondence between their theory and experiments 
which had related bubble velocity with apparent radius of curvature, Davies 
& Taylor (see Ref'. 1 & 2) concluded that the flow near the front of a 
real spherical-'cap bubble must be very close indeed to the irrotational flow 
near the front of' a complete sphere of the same curvature,as they had assumed 
in their theory. They expressed some surprise at this result of their work. 
In fact the equation derived from their assumption about the flow agreed 
better with the experimental measurements of bubble velocity than did an 
equation of similar form derived from measurements of the pressure distribut
ion on a solid model of the bubble cap, which had been obtained in a wind 
tunnel at high Reynolds number. Although their assumption works so well, 
it does not give the required cons·tancy of pressure on the bubble cap except 
in the immediate vicinity of the stagnation point,where the static pressure 
is constant to a first approximation, that is as far as terms of order 02 , 
e being an angular coordinate with origin situated at the centre of curvature 
of the cap. Some time later, Rippin (Ref. 3 & 4) investigated the possibility 
of improving the pressure distribution and he followed Moore'S suggestion 
(Ref.5) for an inviscid model of the flow rather like a Helmholtz free
streamline flow in Which an infinite open wake of stagnant fluid followed 
the bubble. The n\unerical solution which he found did give a virtually 
constant pressure over the bubble cap, but agreement with experiment, as far 
as the relationship between bubble velocity and curvature was concerned, was 
essentially destroyed since the velocities predicted were almost 30% too 
high. This curious situation in which a model satisfying the constant 
pressure requirement only approximately was apparently superior to a model 
in which that condition was approached as closely as practicable prompted 
the work reported in Ref. 6. The procedure adopted there was to apply a 
small perturbation to the flow assumed by Davies & Taylor so as to improve 
the pressure distribution. This contrasts with the gross perturbation 
implied in adopting the infinite open-wake model. It was found with this 
small perturbation that the pressure condition could be satisfied as far as 
terms of order 94 near ~o the stagnation point thus producing a second 
approximation, and the slight adjustment in velocity given by the theory 
gave a result in excellent agreement with experiment. It was shown also 
that the relationship between bubble velocity and the radius of curvature 
at its stagnation point was uniquely defined by the acceleration of liquid 
along the bubble surface at the stagnation point and Batchelor (Ref. 7) 
has pointed out that, at the high Reynolds numbers relevant to this problem, 
the result is exact. 

In work unknown to the author at the time of writing Ref. 6, 
Temperley & Chambers (Ref. 8) had also tried to improve the pressure 
distribution given by Davies & Taylor's approach by incorporating a sink 
term into their velocity potential and also by considering a source alone, 
but although they were able to satisfy the constant pressure condition to a 

.... 
.'.:: 
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second approximation with the first of these approaches, they acknowledged 
that the relationship between velocity and curvature which resulted from 
their work was in poorer agreement with experiment than was Davies & 
Taylor's result. More recently, Harper (Ref. 9) has shown that an alterna
tive closed model can also produce a second approximation which agrees 
with experiment but he saw the fact that his model required a flattened 
sphere while Ref. 6 produced an elongated sphere as a deficiency of this 
approach. He subsequently concluded that infinite, open, stagnant-wake 
models did give useful approximations to the flow field over the front 
part of the bubble and,in a similar vein,Wegener & Parlange (Ref. 10) 
stated that results from such models agreed fairly well with experiments 
when the wake is turbulent. The purpose of this paper is to consider 
these views in the light of evidence available. 

COMPARISON BETWEEN THEORY AND EXPERIMENT 

Using a system of spherical polar coordinates whose origin is located 
at the centre of curvature of the bubble boundary at its stagnation point. S, 
the velocity,U,of a large gas bubble moving with high values of Reynolds 
and Weber numbers has been shown (Ref. 6) to be given by the equation 

, 
U/(ga)~ = l/(db/de) • s 

(1) 

Here g is the acceleration due to gravity and a the radius of curvature 
of the bubble boundary at S, while h(e) describes the variation in the 
magnitude of the liquid velocity on the bubble boundary through the relation 
q = Uh(e). As anticipated on dimensional grounds, the bubble Froude number 
is constant. In attempting to predict this Froude number the 'primary 
objective is to formulate a model whose geometry provides a proper description 
of the flow over the bubble cap so that the quantity (db/de) may be 
accurately determined. (The suffix indicates that the deriv~tive is to be 
evaluated atS.) If a model produces an incorrect value. it may be inferred 
that it gives an inadequate description of the flow in that region. The 
standard for comparison here is of course the experimental evidence which 
is expressed in terms of an apparent radius of curvature, a. rather than a. 
A relationship between ~ and a is readily determined for any model 
(Ref. 6. 9) and, as the name for this class of bubbles suggests. a/a does not 
differ greatly from unity. The combined experiment&results of Davies & 
Taylor. who measured bubble velocities in nitrobenzene, and of Rosenberg 
who used water (Ref. 11), show that 

u/(ga)~ = 0.65 (2) 

The table overleaf shows values of this Froude number given by the various 
models previously described. The column labelled "Difference" shows the 
percentage departure from the experimental value in equation (2). What seems 
apparent from this table is that there is very little evidence to support 
the contentions that open. infinite wake models provide useful approximations 
to the flow over the front of the bubble or that they give results which 
agree fairly well with experiment. 
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Theoretical models 

Authors Dates u/(g;} Difference Geomett.::[ 

Davies & '44& 0.666 2.5% sphere 
Taylor '50 
Temperley '45 0.54 17% approximate cardioid 
& Chambers 0.82 26% open, infinite wake 

Rippin '59 0.84 29% open, infinite wake 

Collins '66 0.652 0.3% perturbed sphere 

Harper '72 0.643 1% oblate spheroid 

Harper emphasised the superficial differences between the perturbed 
sphere used in Ref. 6 and his own oblate spheroid Further consideration 
of these two shapes does reveal, however, that they have a more important 
similarity. Two influences on the flow in the vicinity of the stagnation 
point S may be idEmtified. The first is the effect of the gross features 
of the complete flow at that point, that is whether the boundary shape 
employed is open or closed, the second is the effect of the local changes 
in curvature in the boundary. Clearly, the modified shapes are introduced 
in both cases in order to change the curvature, for constant curvature 
has been seen not to produce a constant pressure. If the local distribution 
of the radius of curvature,w, in the vicinity of the stagnation point is 
evaluated for both these second approximations then it is found that for 
the perturbed sphere 

w = a(l - 0.94e 2 ••••.••. ), 

while for Harper's oblate spheroid 

w = a(l - 0.592 .••••••• ), (4 ) 

where a is again the radius of curvature at S. Thus, in addition to 
both models being closed, both show that in order to produce a flatter 
pressure distribution the radius of curvature of the boundary should 
decrease along the bubble surface moving away from the stagnation point. 
It may be observed that the only known exact solution to the two-d.imensional 
form of this free-boundary problem which satisfies the constant pressure 
requirement at aJ.l points on a cycloid also' shows the same dependence of 
w on e (Ref. 12). Following Davies & Taylor's interpretation of their own 
close agreement with experiment, it is concluded that the flow near the front 
of spherical-cap bubbles must be very close to the irrotational flow near 
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the front of an approximately spherical closed body whose radius 
of curvature in the region of the stagnation point varies as 1 - k02 . 
It is stressed here that this conclusion does not say that the real flow 
is irrotational everywhere outside the closed boundary as some critics 
of this approach have implied. We turn now to the evidence concerning 
the gross features of the flow patterns associated with spherical-cap 
bubbles in order to see whether this can explain whY closed wake models are 
so successful. 

FLOW VISUALIZATION EXPERIMENTS 

Spherical-cap bubbles are conventionally classified as those 
bubbles which rise with velocities independent of the properties of the 
liquids in which they are blown (Ref. 11,13). Haberman & Morton (Ref. 13) 
related bubble velocity with the equivalent spherical radius, r e , through 
the equation 

and they also showed that the parameter which determines the attainment of 
the spherical-cap class in a liquid of density, p, and surface tension, 0, 

is the Weber number 

2 
We = pU 2r/o • (6) 

In Haberman & Morton's wordsthis should exceed "about 20", the lack of 
precision arising because there is no abrupt transition to spherical-cap 
behaviour. In fact a more stringent assessment of figure 21 in Haberman 
& Morton's paper indicates that complete independence of liquid properties 
would implY a somewhat higher value, but their value will be used for 
the moment recognising that it is optimistically low. Combination o~ these 
results sholSthat in order to form a spherical-cap bubble in a given liquid 
the minimum volume of gas required is 

3/2 
l25(0/gp) . 

In the table below the values of V appropriate to two liquids of interest, 
water and nitrobenzene, are compargd with the volumes of gas actually 
employed by various other investigators (Ref. 2, 11, 14, 15, 16) to generate 
what they regarded as spherical-cap bubbles in these liquids. It may be 
observed that in all investigations except MaxworthY's, the volumes 
employed exceeded the minimum required • 

. -;.'. 



V (ml) 
-0--

Nitrobenzene 0.9 

Water 2,5 
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Minimum Volumes V 
o 

Volumes Employed (ml) 

1.48 to 33.8 

4.4 to 200 
4.8 to 125 

> 7.2 
4.5 to 40 

1.5 and 2.5 

Davies & Taylor 

Davies & Taylor 

Rosenberg 

Slaughter 

Davenport et al 

Maxworthy 

Maxworthy's 1.5 ml lnibble is certainly too small and the ambiguous status 
of the 2.5 ml bubl)lE~ may be resolved by reference to other investigators' 
criteria which serve to confirm that Haberman & Morton's criterion is set 
too low. For example, Rosenberg concluded that a minimum volume of 2.85 ml 
was required in water but he also stated that for transition to spherical
cap form to be complete, a minimum of 4.2 ml was necessary, and in those 
experiments where he actually measured cap curvature he used values in 
excess of 4.8 ml. Davenport, Richardson & Bradshaw (Ref. 15) quoted a 
minimum 'of 4.5 ml while Slaughter (Ref. 14) placed the end of the preceding 
ellipsoidal class of bubbles at 5.6 ml and found agreement with equation 
(5) at volumes above 7.2 ml. Slaughter also found that bubbles with 
volumes between 1.5 ml and 5.6 ml rocked regularly from side to side and he 
regarded them as falling in a transitional regime. Similarly, Rosenberg 
described bubbles whose volumes ranged from 0.7 ml and 2.9 ml as in 
transition with irregular shapes Which fluctuated continuously. Maxworthy's 
finding that both a 1.5 ml and 2.5 ml bubble exhibit a turbulent 
amorphous wake stretching far downstream is entirely consistent with these 
statements for the rocking motion is most likely to be associated with 
periodicity in the wake. It is clear, however, that since the bubbles 
employed were not large enough to fall into that class, Maxworthy's evidence 
is inadmissible in a discussion of spherical-cap bubbles. The reviews by 
Harper (Ref. 9) and Wegener & Parlange (Ref. 10) have, however, quoted it 
without criticism. As far as the turbulent nature of the wake is concerned, 
it is not necessary to perform additional experiments to demonstrate this 
since it is already evident from Davies & Taylor's photographs and from their 
calculations of energy dissipation (Ref. 1 & 2). Batchelor has also 
argued (Ref. 7) that the fact that the velocity of a spherical-cap bubble 
is independent of liquid properties implies that the energy dissipation process 
in the wake must be turbulent. The question to be decided, however, is whether 
there is a structure to the flow in the wake on a scale larger than the scale 
of the turbulence. 
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Indirect evidence of structure in the wake of spherical-cap 
bubbles already existed before the flow visualization experiments reported 
here were performed. "Davies & Taylor's photographs had shown a region 
of turbulence directly behind a spherical-cap bubble in nitrobenzene, 
'two-dimensional' versions of these bubbles formed between plane 
parallel plates exhibited a double vortex immediately behind the bubble 
(Ref. 6), and Temperley & Chambers (Ref. 8) recorded that their experiments 
in water agreed with Davies & Taylor's because they had observed clouds 
of small bubbles following each large one. The bubble volumes used in the 
experiments with water presently reported ranged from approximately 40 ml 
to 90 ml so as to ensure that the bubbles were unequivocally of the 
spherical-cap class. These observations were noted in 1966 (Ref. 6), 
they were reported informally at a Euromech Colloquium in 1968 (Ref. 17) 
and one of the still photographs was published by Batchelor in 1967 (Ref. 7). 
In Wegener & Parlange's review article which was particularly concerned 
with visualization of wakes, this evidence was not considered. 

The tank and method of bubble generation have been described 
elsewhere (Ref. 18). In 'some experiments ,small satellite bubbles which 
occurred naturally during the generation process were used for flow 
visualization as in Temperley & Chambers' experiments. In others, tablets 
of a proprietary soluble aspirin ("Aspro") were used to provide white tracer 
particl~s. These were either introduced into the bubble path in a plane 
or column above the bubble generator, or they were allowed to form a cloud 
of material just above the point of generation. The advantage of using 
this material as a tracer was that a little time after the passage of one 
bubble the particles had dissolved thus leaving the tank clear for the 
next experiment. Dispersal of insoluble solid material or diffusion of 
dye between bubble and tank wall, in contrast, tends to obscure the detail 
which of interest. 

The flow pattern seen naturally depends on the frame of reference 
of the observer. Cine film of the motion (Ref. 19, shown during presentation 
and available on loan on request) taken with camera fixed reveals the presence 
of a toroidal vortex behind the bubble accompanying a region whose boundary 
is roughly the spherical surface which continues the bubble cap. With 
still photographs this feature may be inferred using short time.exposures 
while panning the camera with the bubble as in the example in figure 1. Behind 
this bubble, whose volume is approximately 40 ml, are some secondary bubbles 
contained in a cloud of tracer-material which has been transported upwards 
from the region just above the generator where it had been introduced. Some 
tracer material was introduced also into the flow outside the cap/vortex 
boundary in this case. Photographs obtained with camera fixed confirm the 
nature of the flow pattern although they require a little more interpretation 
because the bubble moves past the camera during the time-exposure and 
thus does not appear clearly on the print. 

In figure 2, the brightest patch to the upper left of centre is due 
to light reflection from the left-hand side of the bubble which,in this 
instance also,had a volume of approximately 40 ml. The streaks 
below and to the right of this patch are from tracer particles in the closed 
region of the wake and the fact that the vertical dimensions of patch and 
streaks arp. of the same order implies that they move together through the 

. .... ' , 
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liquid. Tracer particles were also introduced outside this region in this 
case and the flow pattern observed there bears a striking resemblance to 
that of the irrotational dipole which is shown on the right-hand side of 
figure 3. An irrotational dipole gives the instantaneous streamline pattern 
to be expected from the motion of a sphere in an inviscid liquid, but the 
real liquid of co~rse has viscosity and the real flow cannot be irrotational. 
The approximatelY spherical surface presented by the bubble cap and the primary 
closed part of the wake is the source of vorticity in these flows (which 
in figures 1 & 2 have Reynolds numbers of 0(104)), so that the interpretation 
of the real pattern of figure 2 is that it closely resembles the pattern 
which one would expect to be produced by the movement of a sphere on which 
boundary layer separation was absent or delayed until close to the rear 
stagnation point. In figure 2, a band of turbulence is discernable behind 
the closed region. This secondary wake is taken to be produced by the 
confluence of the l)oundary layer at the rear stagnation point of the 
primary closed part. 

Figure 4 shows the model of wake structure which emerged from these 
experiments (Ref. 19 ,20 ; the boundary laver thickness on the cap is 
exaggerated in this figure). It is unlike that envisaged in Rippin's work 
where the boundary layer was taken to separate from the bubble rim to produce 
an infinitely long open stagnant wake of liquid which moved with the bubble. 
The instantaneous streamline pattern for such a model is sketched on the 
left-hand side of figure 3, but since this pattern has not been observed, 
it is concluded that the model does not provide an acceptable description 
of the real flow. This is why it is unable to produce an accurate value for 
Froude number as shown in the earlier table. By the same token, figure 4 
provides an explanation of the success of closed models for the system of 
bubble and primary wake does offer an approximately spherical boundary to the 
flow. 

On solid spheres the pressure distribution over the forward region 
is known to be similar to that given by irrotational flow theory even in 
the condition when the boundary layer is laminar and separates before the 
maximum transverse dimension is reached. Boundary layers on free surfaces 
are less prone to separate in adverse pressure gradients than their counter
parts on rigid surfaces (Ref. 7), so that in the bubble problem where the 
boundary layer has this different character and does not appear to separate 
from the surface of the primary wake, correspondence between irrotational 
flow theory and the flow over the forward part of the bubble is likely to 
be excellent. Closed models of the turbulent wake of spherical-cap bubbles 
thus have a rationale. As with other boundary layer approaches, the logical 
first approximation to the flow shown in figure 4 is the irrotational flow 
past the closed boundary. An understanding of boundary layer behaviour leads 
one to expect that flow to provide a very good description of the real flow 
in theregion of prime interest,that is near to the front stagnation point, 
but leads also to the recognition that it will be inadequate to describe 
the details of the real flow over the rear part where the boundary layer 
thickens in the adverse pressure gradient. In order to remove an apparent 
misconception which was raised in Maxworthy's paper and is echoed by Wegener 
and Parlange it is stressed again that use of a closed model for the 
flow over the cap does not implY a. belief that the real flow is irrotational 
everywhere outside the closed boundary. 
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Although Wegener & Parlange recognised the existence of a closed 
structure in the wake for large bubbles whose wakes were laminar (and 
whose velocities are thus dependent on liquid properties) their view 
was essentially that once transition to turbulence occurs, the wake 
becomes amorphous. Their method of flow visualization was a schlieren 
technique which certainly does reveal the extent of the turbulence 
but is not particularly suitable for revealing flow patterns since the 
paths of individual particles of fluid are not readily identified. The 
main features of their figure 5 showing turbulence behind spherical-
cap bubbles in water are not inconsistent with figure 4 here, in 
particular the curvature of the edge of the turbulent region immediately 
below the bubble which continues the cap curvature implies order in the 
flow there,consistent with a primary wake vortex. In fact Wegener & 
Parlange record in a footnote that they have observed satellite bubbles 
to recirculate in this region and, as in the present experiments and 
in Temperley & Chambers' observations, this implies the existence of 
a mass of liquid in that region moving with the bubbles. The 'edge' 
of the turbulence in the secondary part of the wake is of course not 
a streamline in the flow, and the photographs do not demonstrate the 
existence of a wake of the Helmholtz type. 

CONCLUSION 

Closed wake models accurately describe the flow near the front 
of spherical-cap bubbles giving results in good agreement with experiment 
because they take into account the geometry of the real flow. 
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Figure 1. Streamlines relative to a 40 ml bubble 
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Figure 2. Instantaneous streamlines J 40 ml bubble 
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infinite open wake irrotational dipole 

Figure 3. Instantaneous streamline patterns 
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Figure 4. Wake structure inferred from experiment 
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THE APPLICATION OF DROPS AND BUBBLES 

TO FLUID FLOW MEASUREMENTS 

E.F.C. Somerscales 
Rensselaer Polytechnic Institute 

This paper is concerned with the characteristics of drops and 
bubbles when used as flow tracers for the quantitative study of fluid 
velocity. Particular attention is paid to the practical aspects of 
assessing and choosing bubbles and drops for flow measurement. Both 
laminar and turbulent flow situations are considered. The determina
tion of the dynamic characteristics of bubbles and drops is discussed 
together with the physical properties required for such a determina
tion. The effect of extraneous force fields. particularly gravity. 
is reviewed. The theoretical and practical aspects of introducing 
bubbles and drops into the fluid are considered. The paper concludes 
with a discussion of the types of bubbles and drops, their selection 
and a review of previous applications. 

Manuscript was not available from the author at the time the proceedings 
were submitted to the printer. 
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A Rev:l.ew of 

THE DYNAMICS OF BUBBLES AND DROPS IN A VISCOELASTIC FLUID 

E. Zana and L. G. Leal 
Chemical Engineering. California Institute of Technology 

I. INTRODUCTION 

Some of the most important processes in the chemical industry involve the 

motion and dissolution of gas bubbles and drops in viscoelastic suspending fluids. 

Nevertheless. relatively few investigations have been undertaken to date which 

consider these problems either experimentally or theoretically. In this paper 

we briefly review re(:ent research progress. The paper is split into two parts. 

In the first. we reCllp the rheological behavior of a viscoelastic fluid in 

general viscometric ()r elongational flows. In the second part. we describe 

recent observations Ilnd/or predictions for several diverse types of bubble or 

drop motion. concentrating on those effects which appear to us to be primllrily 

due to the non-Newtonian rheological properties of the suspending fluid. 

Although most of the macromolecules which are commonly used to produce visco

elastic solutions are also moderately strong surfactants. we will not be 

specifically concerned with the related interfacial or surface effects. In 
addition. the many papers which describe theoretical calculations of bubbles or 

drops in power-law type non-Newtonian fluids will ~ be considered here. 

II. RHEOLOGICAL PHENOMENA IN VISCOELASTIC FLUIDS 

In general. the features characterizing most realistic viscoelastic fluids 

may be summarizedt as a nonlinear relationship between stress and bulk deforma

tion rate (specifically. the symmetric rate of strain tensor) and a memory 

for past configurations which diminishes on a time scale A. The stress at a 

particular point in space thus depends not only on the instantaneous deformation 

rate. but on the history of deformation of the fluid element which occupies 

that point. In steady viscometric flows (i.e. shear flows). these features 

lead to a decrease Ul the effective viscosity with increasing shear rate and 

the existence of non·-isotropic normal stress contributions which correspond to 

an extra flow-induced tension or compression in the tluid. tt 

Although these effects are well-known. they constitute only a portion of 

the picture for most problems in bubble and drop dynamics where the local fluid 

t with apologies to any rheologists in the audience 

tt A fluid whose only non-Newtonian characteristic is a shear-thinning viscosity 
will be called purely-viscous. The power-law model is the most common des
cription of such a fluid. 

.>:.(" 
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motion near the bubble or drop is almost always unsteady in either a Lagrangian 

or Eulerian sense. When the flow is not steady. the mechanical behavior of the 

fluid depends strongly on the time scale of change in 'the flow. T. compared 

with the intrinsic scale A of the f1uid~s memory. Provided T » A, the material 

response will be closely similar to that in steady flow. However. when T and 

A are of comparable magnitude, the fluid microstructure lags behind the imposed 

deformation and the stress both increases relative to that in a purely-viscous 

fluid and shows a phase lag relative to the deformation. For example. in rapid 

start-up of a viscometric flow (or rapid increase in deformation rate from one 

steady value to another). there is a characteristic overshoot of stress which 

approaches the steady-state value in an oscillatory fashion with a period of the 

order A. Similarly. if a steady flow is suddenly stopped. the stress does not 

return instantaneously to its rest value. as it would in a purely-viscous fluid. 

but rather relaxes on a time scale which is again related to A. In addition. 

if the driving force for motion is suddenly removed. there is generally a macro

scopic recoil in which the motion may actually reverse itself before vanishing 

at long times. 

Further. of significance to many problems of bubble or droplet motion is 

the material behavior in non-viscometric flows. particularly the so-called uni

axial extensional deformations which are characterized by the elongational 

viscosity. The elongational viscosity is found to increase with increase of A 

and to also increase rapidly with deformation rate (indirect contrast to the 

shear viscosity) even in ·very dilute polymeric solutions where the viscometric 

behavior is indistinguishable from a Newtonian fluid. It has. in fact. some

times been suggested that the elongationa1 viscosity becomes effectively infinite 

at some critical rate of elongation. Of course. such an effect cannot be observed 

experimentally. What happens instead is that the local rate of extension in the 

fluid is rapidly decr~ased most often by internal re-adjustment of the flow 

patterns. An example is the well-known converging flow from a large tank into 

a small channel. l In that case, instead of following the wall contours. which 

would produce some particular rate of extension for a given flow rate, the 

fluid which enters the small channel is restricted upstream to a narrow conical 

area. leaving a slowly recirculating toroidal eddy filling the region between 

the walls and the cone. In this way the resulting fluid motion exhibits a much 

reduced extension rate and correspondingly smaller stresses in the converging 

region of the flow. This type of internal flow adjustment is characteristic of 

uniaxial elongational motions due to the large variations in stress which 

accompany a change in the rate of extension. 
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Finally. it is relevant to remark briefly on the existence of constitutive 

models which incorporate the effects described above. In particular. one may 

ask whether the possibility exists for realistic theoretical calculations of 

bubble and drop mot:Lon in viscoelast:l.c fluids. Unfortunately. the prospects 

are not good at present. The difficulties are two-fold. First. and foremost. 

is the lack of realistic constitutive models. Of the very large number of con

stitutive relations which have been proposed. none has yet been tound to be 

quantitatively satillfactory even for simple viscometric (shear) flows. where 

extensive experimenl:al data exists. 2 Furthermore. even if one is willing to 

accept qualitatively correct viscometric behavior. there is no a p~ioPi reason 

to expect equally good performance in nonviscometric flows such as those 

associated with the motion of bubbles or drops. and no extensive rheological 

studies of nonviscometric flows have yet been carried out. The second diffi

culty with any theol~etical analysis is due to the basic nonlinearity of visco

elastic fluid behav:!.or. In addition to the familiar non-linear inertia terms in 

the equations of motion. there are additional nonlinearities associated with the 

constitutive model. Only in the limit of dynamically and rheologically slow 

flowt do the equations become linear. and then the material is limit.ed to nearly

Newtonian behavior. 

Thus, if we are. to improve our knowledge and understanding of the motion 

of drops or bubbles in a viscoelastic fluid, we must rely primarily upon experi

mental evidence. coupled with a qualitative application of general rheological 

principles rather than detailed theoretical analysis. 

III. VISCOELASTIC CONTRIBUTIONS TO BUBBLE AND DROP DYNAMICS 

A. Translation of Gas Bubbles through a Quiescent Fluid 

The aspect of bubble and drop dynamics which has received the most attention 

in the literature is the buoyancy driven motion through a quiescent fluid. In 

addition to its fundamental importance. this problem is of considerable practical 

interest in the chemical engineering literature because of its relationship to 

residence-time and mass transfer rates in gas/liquid contact operations. 

1. General Characteristics 

In figure 1 we have plotted terminal velocity. U. as a function of bubble 

volume, V, for the typical case of a 1% solution of Separan AP30tin water. Also 

shown are data for glass spheres of various volumes. and instantaneous values 

t Flows in which T » A and UL/v « 1-

t Typical rheological data for this system may be found in references 2 and 11. 



431 

of U versus V for a dissolving CO2 bubble. Finally, we have superposed a series 

of photographs of the nondissolving bubbles, which are intended to illustrate 

typical bubble shapes in a viscoelastic liquid. The first extensive investigation 
3 of bubble shape seems to have been that of Philippeff, but subsequently a number 

of investigators have reported relevant experiMental observations. The present 

photographs are from Zana. 4 In the Newtonian case the bubble is spherical for 

small sizes, and is then deformed by the effects of fluid inertia through oblate 

spheroidal shapes to the well-known spherical-cap at larger bubble volumes. 

However, in the viscoelastic case the initial deformation is generally dominated 

by elastic contributions which produce a prolate ellipsoid. followed by an inverted 

tear-drop shape. As inertia effects increase, the prolate tear-drop is deformed 

into an oblate spheroid with a trailing cusp and finally into a modified spherical

cap. The terminal velocity data also show several distinct regimes. For the 

smallest bubble sizes in which the effective Reynolds number is very small and 

elastic effects modest, the data for the non-dissolving bubble is in essential 

agreement with that for the rigid glass spheres. However, at r ~ 0.29 em, there 
e 

is an abrupt transition from this Stokes-like regime to a new regime which shows 

essentially the same initial slope (alog U/alog V), but in which the terminal velo

cities are very considerably increased. Finally, there is a gradual transition 

region where the bubble approaches a spherical-cap shape and (alog U/alog V) 

approaches 1/6 after wall-corrections have been applied. as originally predicted 

by Davies and TaylorS for a Newtonian fluid. 

A measure of the importance of fluid elasticity in an unsteady flow is the 

largeness of the ratio of the intrinsic memory relaxation time A and the time 

scale of change of the flow R/U in which R is the characteristic length scale of 

the bubble in the direction of motion. This ratio, as well as the corresponding 

Reynolds number is tabulated for the data of figure 1 in table 1 which is 

appended to the figure. 

shown that A/(R/U) + O. 

which we have data. the 

In the limit as bubble volume V + 0 or V +~. it may be 

However, clearly in the range re • 0.15 to re • 1.5 for 

ratio of time scales is not small and elasticity should 

have a noticeable influence. especially for the smaller sizes where it is not 

moderated significantly by inertia. 

For r < 0.15. the slope (dlog U/dlog V) must approach the Newtonian creeping 
e 

flow value of 2/3 as bubble volume is decreased. However, in the range of figure 1, 

the measured slope is greater than either the creeping flow value or the value 

(1 + n)/3n, which is calculated using a power-law constitutive model. 6 A compari

son of the power-law parameter n obtained from measurements of viscosity in simple 

" , \ 
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shear flow with that inferred from the measured slope (alog U/alog V) is shown 

in table 2 for several Separan AP30/water/glycerine solutions. Since the power

law model only includes purely-viscous effects, this comparison provides strong 

evidence for the importance of the flu:Ld elasticity in the motion of small 

bubbles, at least for moderate polymer concentrations. A further indication of 

significant elastic effects in the motion of small bubbles may be seen in the 

prolate shapes of figure 1. We have noted previously that viscoelastic flows 

often adopt a detailed pattern which minimizes the elastic component of the stress. 

In motion of a rigid body, this can only be accomplished by increasing the length 

of the region fore and aft in which the flow is significantly influenced by the 

body. Such an effect is indeed observed7,a in flow past rigid spheres and 

cylinders. In the case of bubbles (or drops), a similar effect can also be 

~hieved by deformation of shape to an elongated (or prolate) form, and this fact 

suggests one possible explanation of the prolate spheroidal and tear-drop shapes 

which are actually observed. 

The terminal velocity adopted at steady state is that value which gives an 

exact balance between the rate of world.ng by buoyancy forces, FU, and the rate of 

energy dissipation in the fluid. The latter is effected by viscoelasticity in 
6 

two distinct ways ; f:Lrst, through changes in the velocity field and, second, by 

the elastic stress contribution to the dissipation rate. For large bubbles, in 

which the inertia terms dominate both viscous and elastic terms in the equations 

of'motion, the velocity fields are essentially the same in Newtonian and non-
a Newtonian fluids so that the main effect is through the dissipation mechanism. 

Although relatively minor, especially :I.n the spherical-cap regime, experiments 

in a series of increasingly viscoelast:l.c fluids4 do show a systematic decrease 

in terminal velocity at a fixed volume, implying, as expected intuitively, that 

the elastic contribution to the rate of energy dissipation must be positive. Thus, 

in general, the viscol!lastic effects on "dissipation" and of changes :Ln the velocity 

field toward a smoothe.r or elongated configuration are at least partially 

cancelling in their influence on terminal velocity for a given volume. For 

smaller bubbles, in which the inertia terms are negligible, the influence of 

viscoelasticity on bubble motion may still be small if the flow is "v:l.sco

elastically slow" in the sense R/U »A. More frequently, viscoelastj.city is 

important for small bubbles (or drops) as evidenced in figure 1 and table 1. 
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2. The Velocity Transition Phenomenon 

Of all of the viscoelastic effects exhibited in figure 1, the most intriguing 

and potentially important is the large and discontinuous transition in terminal 

velocity at r ~ 0.29 cm. 
e 9 

The existence of such a transition was first reported 

by Astarita and Apuzzo, who found a six-fold increase in bubble velocity at the 

transition point for a 0.5% solution of the commercial J-100 polymer. Similar 
10 results have more recently been reported by Calderbank, Johnson and Loudon in 

1% Polyox solutions and by Leal, Skoog and Acrivosll in solutions of the commercial 

coagulation polymer Separan AP30. A steep but not abrupt increase in velocity has 

also been observed in the case of liquid drops moving through viscoelastic 

liquids12 ,13,l4,l5 and for gas bubbles which are dissolvingt (see figure 1). 

Kintner et al. 15 proposed that the increase in velocity for drops is the 

result of a transition in the conditions at the drop interface from a no-slip 

to a freely-circulating regime (equivalent to the well-known transition from the 

Stokes to Hadamard regimes in Newtonian liquids) coupled with a change of shape 

corresponding to a decrease in frontal area. In the case of gas bubbles, however, 

Astarita and APuzz09 showed experimentally that the frontal area actually 

increased during the velocity transition. As a result, it was speculated that 

the velocity increase was solely a result of the transition in surface conditions. 

with viscoelasticity hypothesized as being responsible for the abruptness of the 

transition. Further, it was implied that the magnitude of the velocity transition 

could be largely accounted for by considering only the purely-viscous. shear 

thinning viscosity, ignoring elastic and normal stress contributions. 

A partial test of Astarita's proposal was reported several years ago by 
11 Leal, Skoog and Acrivos. Careful experimental measurement showed that, a) the 

bubble velocities for volumes less than the critical volume are precisely equal 

to those measured for equal volume glass spheres provided suitable density 

corrections are utilized; b) no terminal velocity transition occurs for the 

t 
The significance of this observation remains unclear to us at the present time. 



434 

glass spheres. The relevant data are reproduced in figure 1. Hence, strong 

indirect evidence was found to confirm the change in interfacial conditions as 

the cause of the observed velocity transition. The effect of shear dependent 

viscosity. in the absence of viscoelastic effects. was also studied by employ

ing an empirical (curve-fit) purely-viscous fluid model to numerically calcu

late the terminal velocities on non-circulating. partially circulating, and 

fully circulating spherical bubbles at the measured critical volume. It was 

found that the presence of shear-dependent viscosity alone could only account 

for about 30% of the magnitude of the measured velocity transition. Hence. it 

was surmised that better agreement between theory and observation could only be 

achieved by taking account of viscoelastic effects in the fluid. Of perhaps 

greater significance however was the subsequent conclusion, based on simple 

qualitative arguments, that a relatively small additional viscoelastic contribu

tion to the force balance on the bubble would be sufficient to account for the 

much larger measured velocity increases. The conditions required to produce a 

consistent result are that the drag be reduced in both the pre-transition and 

post-transition regimes. but with the effect being somewhat greater in the 

latter case. 

As an initial test of the viability of this proposal, it was desired to 

determine whether elastic effects, in the absence of shear-dependent viscosity, 

would contribute to the particle drag :I.n a qualitatively consistent manner. In 

order to investigate this question, Zana4 utilized "slow-flow" asymptotic 

solutions, based on the 6-constant 01droYdl6 fluid model, to compare the visco

elastic contributions to the drag on a rigid no-slip sphere and on a freely 

circulating spherical bubble. The rig:l.d sphere result was taken from the solu

tion of Les1ie. 17 Thl~ solution for the. case of a spherical bubble was obtained 

by Zana. 4 An equivall!nt. independent solution for the stream-function field 

was published independently by Wagner and Slattery.1S However. Wagner and 

Slattery's analysis appears to contain a number of algebraic andlor printing 

errors. In the limit corresponding to a shear-independent viscosity, the drag 

on a spherical bubble was found by Zana to be 

2 
~ubble a 2nnoUba{2 - 0.066(1 - a)(30 + a)E + ••• } 

where no is the viscosity, Vb the bubble velocity and a the bubble radius. 

The parameter E is the ratio of the intrinsic relaxation time Al from the 

Oldroyd model, to the convective time scale alUb and is assumed to be small in 

accord with the "slowooflow" approximation. The parameter a is the ratio of 
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retardation and relaxation times A2/Al and satisfies 

with the Newtonian limit being a • 1. The corresponding expression for the 

drag on a rigid sphere is17 

2 
D h - 2nn U a{3 - 0.016(1 - a)(3 - a)£ } sp ere 0 s 

Hence. comparing the two expressions. it may be seen that the purely elastic 

contribution to the drag causes a decrease in both cases at 0(£2). but that the 

effect is much more pronounced for the bubble than for the rigid sphere. Thus. 

the "slow flow" viscoelastic approximation offers strong preliminary evidence 

to support the original hypothesis of Leal. Skoog and Acrivos. ll 

In addition. we have recently carried out an extensive flow visualization 

study for gas bubbles in solutions of Separan AP30 in water and water/glycerine. 

as an independent attempt to assess the importance of viscoelastic contributions 

to the velocity transition phenomena. Centerplane streakline photographs were 

obtained for bubbles which were slightly smaller and for bubbles which were 

slightly larger than the transition volume. Also obtained were streamlines 

for rigid particles, which were machined to the same shape as the bubbles. in 

Sep AP30/water and in mineral 011 (Newtonian) at the same nominal Reynolds 

numbers. The main evidence of elastic influence was a somewhat stronger 

upstream influence of the bubbles on the flow in the Sep AP30 solutions. as 

compared with that for the geometrically similar rigid particles in mineral 

oil. Significantly. the degree of upstream influence for the bubble also 

appeared to be enhanced after transition, thus supporting the "requirement" 

of larger viscoelastic contributions in the post-transition regime. 

B. Deformation and Break-up of Drops in Shear and Extensional Flows 

A problem of considerable practical importance in the chemical processing 

industry is the dispersion or emulsification of one liquid phase in another. 

Insight into this highly complex phenomena may be obtained by studying the 

deformation and break-up of a single liquid drop subjected either to shear or 

extensional flow of an ambient fluid. When either the drop, or the suspending 

fluid (or both) is non-Newtonian. experimental observation has shown that the 

deformation and break-up processes can be fundamentally changed from the more 
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familiar phenomena in a Newtonian system. 

The theory of deformation and alignment of Newtonian drops subjected to 

fluid was initiated by Tay1or19 simple shearing motion of a second Newtonian 

and taken to higher levels of approximation by 20 Chaffey, Brenner and Mason, 
21 and by Cox. Here, we concentrate on the case of Newtonian or viscoelastic 

drops in a non-Newtonian suspending fluid, where the deviations from predicted 

Newtonian behavior are greatest. t 

1. Deformation 

The majority of experiments have been reported for Newtonian drops sub

jected to simple shearing motion of a non-Newtonian suspending fluid. When 
24 the ambient fluid is purely-viscous, the drop becomes increasingly deformed 

with increase of shear-rate, but does so less rapidly than predicted by the 

Newtonian theory. On the other hand, the droplet orientation for a given 

degree of shape deformation appears qualitatively similar to the Newtonian case, 

and for small degrees of deformation, the major axis of the drop is aligned at 

45° to the flow. In contrast, the degree of alignment for a viscoelastic sus

pending f1uid22 is much greater, and shows an apparent small deformation limit 

of only 29° from the flow direction. In addition, although the observed modes 

of deformation are similar to the Newtonian and purely-viscous cases, it has 

been shown experimentally25 that the degree of deformation does not always 

increase monotonically with shear-rate, but for small drops exhibits a maximum 

at some intermediate value. 

Relatively few studies have been carried out of bubble or droplet deforma

tion in non-viscometric flow, other than the deformation in simple translation 

which was described earlier. The only other work of which we are aware is the 

Ph.D. theais of W. K. Lee26 which is concerned in part with deformation and 

breakup of viscoelastic drops in extensional flow fields of a Newtonian suspend

ing fluid. The results of Lee show the deformation to be the same as for New

tonian drops with a viscosity equal to the zero shear viscosity of the non

Newtonian fluid. 

It is important to note that all of the studies referred to above were 

carried out without any attempt to systematically vary or measure the inter

facial properties between the drop and surrounding fluid. A recent experimental 
27 study by Bartram provides one example which illustrates the danger in 

generalizing such results. Bartram studied the deformation of a viscoelastic 

t Experiments relevant to non-Newtonian drops in a Newtonian suspending fluid 
have been reported by Gauthier, Goldsmith and Mason22 and by Tavga~.23 
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fluid with zero or near zero interfacial tension and relatively large internal 

viscosity. In this case the initially spherical drop first elongated in the 

direction of the vorticity axis, then exhibited a simultaneous rocking motion 

reminiscent of Jeffery orbits for a rigid spheroid in a Newtonian fluid,28 

finally buckling and breaking up as the elongation was continued. This rather 

astonishing mode of deformation (and break-up) is quite unlike any of the 

previous observations described above, and clearly emphasizes the difficulty of 

analyzing experimental results when all of the relevant dimensional parameters 

have not been determined or varied in a systematic fashion. 

2. Break-up 

The most comprehensive investigations of drop break-up in non-Newtonian 

systems are due to Flumerfelt25 and his students. 23 ,26 Results for simple 

shear flow have been reported by Tavga~23 for viscoelastic drops in Newtonian 
25 23 fluids, and by Flumerfelt and Tavga~ for Newtonian drops in a viscoelastic 

suspending fluid. Dimensional analysis shows that the critical shear-rate for 

break-up in a given viscoelastic fluid must depend on the internal to external 

viscosity ratio, and on the relative magnitude of the relaxation time for the 
·-1 fluid, A, compared to the time scale Yc of the shearing motion. Available 

experimental data for Newtonian systems has shown the critical shear rate for 

break-up, Yc' to be unique for each fluid system. In contrast, howeve:, the 

extensive studiea in viscoelastic fluids cited above all suggest that y increases 
• c 

l;nearlY with AYc for fixed and moderate values of the viscosity ratio and 

AY greater than 1. Thus, in non-dimensionalized form, it is found c 

(n:D)yc'" cl (AYc) + c2 

where n' and a are the viscosity and interfacial tension, and D the equivalent 

diameter of the drop. An extremely important and obvious implication of this 

relationship is that break-up can occur for a given fluid system only if 

D > (*)cl 

i.e. there exists a critical drop-size below which break-up cannot occur for 

viscoelastic systema. This result is in sharp contrast with the Newtonian case 

where, within certain limits of the viscosity ratio, drops of any size may be 

broken by application of sufficiently high shear rates, and strongly suggests 

the difficulty of achieving very fine dispersions in viscoelastic systems. 
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Another result of: considerable importance is the influence of transient 
23 25 effects on drop break··up in viscoelastic systems. Both Tavgac and Flumerfelt 

used rapid start-up of: simple shear flow as a test case. For fully Newtonian 

systems, or for viscoelastic drops in a Newtonian fluid, the break-up under 

transient conditions does not differ significantly from that observed in steady 

flow. However, for Newtonian drops in a viscoelastic fluid, the critical 

shear-rate for break-up is sharply decreased in the start-up flow relative to 

its value in steady shear. 

Finally, results similar to those of Flumerfelt and Tavgac were also 

obtained by Lee26 for break~up in a uniaxial extensional flow. That 1.s, for a 

fixed and moderate val.ue of the viscosity ratio, the critical extension rate 

for break-up increasesl linearly as the time scale of the flow is decreased 

relative to the relaxation time of the fluid. Thus, for a fixed fluid system, 

break-up can occur onl.y for drops larger than some critical volume. 

In summary, we may note that the effect of viscoelasticity, in all cases, 

is to increase the required flow-rate for break-up. For small drops, where 

elastic effects are most significant, break-up is apparently prevented altogether 

in a sufficiently viscoelastic fluid (large X). These effects may possibly 

reflect an increasing degree of "smoothing" of the disturbance flow as the fluid 

motion adjusts, in the manner described earlier, to avoid large elast:f.c stress 

contributions. However, no detailed theoretical investigation of the break-up 

phenomena has yet been attempted, and there is no experimental evidence avail

able of the detailed velocity fields in the vicinity of a drop which could be 

used to test this hypothesis. The decrease in critical shear-rate during a 

start-up flow,is almost certainly a result of the characteristic large overshoot 

of stress which occ\~s under such circumstances (see section II) although again 

no direct exper:1ment:al. or theoretical support exists for this assertion. In 

view of the practical importance of dispersion processes, it is to be hoped 

that further investigations will be carried out which will elucidate the 

mechanisms of deformation and break-up in viscoelastic fluids. 

c. Lateral ~ation of Deformable Drops in Poiseuille and Couette Flows 

The change in bulk flow properties which may be attributed to the suspended 

drops of an emulsion depend critically on the concentration distribution in the 

flow apparatus. It has been observed that drops in a Newtonian system tend to 

migrate across the streamlines of a bulk (undisturbed) flow in such a manner as 

to produce a cross-stream variation of droplet concentrations, even at very low 

particle Reynolds numbers. 28 In Poiseuille flow, migration is toward the tube 
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centerline, while in Couette flow two-way migration occurs toward an equilibrium 

pOSition which is midway between the cylinders. In both cases, the phenomena 

has been explained as resulting from deformation of the drop and its interaction 

with the walls. 

Mason and co-workers24 ,29 have shown experimentally that the phenomenon are 

altered significantly when the suspending fluid is non-Newtonian. Distinctly 

different results are obtained depending upon whether the fluid is fully visco

elastic or purely-viscous. In Couette flow,24 the equilibrium position is 

moved closer to the inner cylinder for the purely-viscous case, but closer to 

the outer cylinder for a viscoelastic fluid. In Poiseuille flow,29 drops in a 

viscoelastic fluid migrate toward the tube axis as in the Newtonian case, but at 

a much greater rate. Drops in a purely-viscous fluid, however. exhibit two-way 

migration toward an equilibrium pOSition which lies between the centerline and 

tube wall. 

Qualitatively, these results can be understood by considering Mason's further 

experiments with rigid spheres in the same flow systems. 24 ,29 These show migra

tion in the direction of lowest shear-rate when the ambient fluid is viscoelastic, 

but migration in the opposite direction for a purely viscous suspending fluid. 
30 Recently, Ho and Leal have obtained the former result analytically for a visco-

elastic fluid in the slow flow limit, and have shown that the major effect arises 

because of induced normal stresses in the disturbance flow near the particle. 

Qualitatively then, it would appear that the migration of deformable drops can . 

be accounted" for by assuming a superposition of the migration effects due to 

particle deformabllity with those due to the non-Newtonian rheo1ogy. Of course, 

it is evident that this conceptual procedure takes no account of the coupled non

Newtonian deformation effects, and a more definitive understanding of the phenomena 

awaits further theoretical and experimental study. 

D. Oscillations and Collapse of Gas Bubbles Due to Acoustic and Impulsive 

Pressure Variations, and Due to Mass Transfer. 

The variation of bubble volume with time due to pressure variations in the 

ambient fluid, or to dissolution of the bubble by mass transfer is of both 

practical and theoretical interest in connection with problems of flow-induced 

(or acoustical) cavitation, and of gas-liquid contact mass-transfer operations. 

Interestingly, however, with the exception of mass-transfer measurements for a 

translating bubble,4,10 very little experimental information of relevance is 

available. Furthermore, unlike all of the previous examples, the motion induced 

in the fluid by the changing bubble volume is a pure elongational deformation. 
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Although this extensional motion is generally coupled with a buoyancy-driven 

translation, we consider here the limiting case in which the characteristic 

velocity of translation is small and neglected compared with the characteristic 

radial velocity induced by the changing volume. 

1. Pressure-induced Volume Variations 

The motion of a void or an insoluble gas bubble induced by a sudden pressure 

surge, or by application of acoustic pressure variations has been studied 

theoretically by Fogler and Goddard3l ,32 using a linear viscoelastic constitu

tive model. 

In the absence of elastic effects, a void will generally collapse to zero 

radius when subjected to a sudden pressure, surge, while an insoluble gas bubble 

will generally always rebound short of actual collapse as a result of the sharp 

increase in internal pressure. The response in a viscoelastic fluid depends 

upon the magnitude of the intrinsic relaxation time of the fluid compared with 

the classical Rayleigh collapse time for the bubble or void. When the relaxation 

time exceeds the Rayleigh collapse time, the elastic response of the fluid can 

significantly retard the collapse of a void and produce a prolonged oscillatory 

approach to the final collapse. Indeed, for A + ~ and viscosity ~ + 0, Fogler 

and Goddard's3l analysis for a void shows either indefinite oscillation about 

an equilibrium radius, or complete collapse on the first cycle, depending on 

the magnitude of the imposed pressure increase. For finite ~, the oscillation 

is damped in time, while for finite A, the void ultimately collapses; but the 

process is delayed for several cycle!! with a final· collapse time which depends on 

A. In all cases, the period of oscillation is essentially the Rayleigh collapse 

time for the system. Insoluble gas bubbles, in fluids with large A, decrease 

from their initial radius to a new equilibrium radius via a similar oscillatory 

cycle which shows an amplitude dependent both on the intrinsic relaxation time A 
32 and the elastic modulus of the linear viscoelastic model. A minimum amplitude 

of oscillation is found for values of A close to the Reyleigh collapse time. 

In an oscillatory pressure field (such as that induced by acoustic waves), 

the motion of a gas bubble is systematically damped by a decrease in the time 

scale of oscillation relative to A, llnd with increase of the elastic modulus. 

2. Bubble Collapse Due to Dissolution 

The related problem of bubble collapse due to dissolution of the gas into 

the surrounding liquid differs qualitatively from the pressure-induced motions 

which we have just discussed. Most important is the fact that the mass-transfer 

process which drives the collapse, aud the collapse-induced fluid motion are 
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intimately coupled. In a recent investigation, Zana and Lea133 have used an 
16 Oldroyd-type constitutive model to study the dynamics of bubble collapse by dis-

solution assuming that the bubble and the suspending fluid are initially 

motionless. As in previous examples, it was found that the elasticity of the 

fluid played a significant role only when the natural collapse time was comparable 

to the intrinsic relaxation time A. 

A plot of bubble radius as a function of time is shown in figure 2 for 

three different values of A. It may be noted, first of all, that the curves 

cross each other at a dimensionless time of approximately 0.4. Thus, an increase 

in A actually produces an increased rate of bubble collapse during the initial 

stages of the collapse process, but then acts to retard the bubble motion for the 

remainder of the bubble's lifetime. The fluid flow induced by collapse of a 

spherical stationary bubble is an unsteady uniaxial extension. Therefore, one 

would expect the elastic influence on the collapse process to be a direct con

sequence of its influence on the e10ngationa1 viscosity n. We have noted earlier 

that n is an increasing function of the rate of elongation for fixed A and steady 

flow, and is also increasing for increasing A. Thus, one would expect the bubble 

to collapse more slowly as A is increased, provided changes in the induced flow 

occur sufficiently slowly. This is precisely what is observed for times t ~ 0.1. 

Clearly, the enhanced collapse rate with increased A for t < 0.1 cannot be ex

plained in terms of the increase in steady-state elongationa1 viscosity. However, 

it can be simply understood in a qualitative sense by considering the transients 
, 

associated with stress growth. Recall that this is a start-up problem, i.e. 

initially the bubble is stationary and there is no fluid motion. Therefore, 

when the bubble boundary is set in motion at t ~ 0 by mass-transfer, there is 

a transient period of stress growth with an approximate time scale of the order 

of the intrinsic (stress) relaxation time, A. During this period, the instan

taneous resistance to motion is less than it would be at steady-state in the 

same fluid with the same elongation rate ; and consequently the collapse rate 

overshoots its corresponding steady-state value. Ultimately, as the stresses 

build up, they too overshoot causing the elongation rate to decrease until it 

finally approaches a slowly varying state in which the steady e1ongational vis

cosity is effective in governing the collapse rate. We note that a similar over

shoot of the rate of chlnge of cavity volume was also reported by Street34 for 

cavity growth in a viscoelastic liquid in spite of the fact that the fluid 

dynamics of Street's problem is fundamentally different from the present collapse 

problem--the bubble growth induces a biaxial extensional flow, whereas the 
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collapse produces a uniaxial extens:Lon. 

Finally, it should be remarked that the stress-overshoot is closely related 
32 to the oscillatory motion pr.edicted by Fogler and Goddard in a cavity subjected 

to a sudden pressure surge. A more detailed account of the work described here 

may be found in Zana and Lea1,33 and in Zana. 4 
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Table 1 

re }../ (RlU) . UreN 

0.15 0.36 1.8 x 10 -4 

0.2 0.55 -4 7.5 x 10 

0.3- 0.85 7.8 x 10 -3 

0.3+ 1.4 9.3 x 10 -2 

0.4 2.0 0.43 

0.5 2.2 1.3 

0.6 2.1 3.6 

0.7 2.1 4.6 

0.8 1.9 5.9 

1.0 2.3 5.7 

1.5 2.1 7.8 

2.0 1.9 8.3 

Table 2 

n(termina1 velocity 
-1 Solution measurement) n(viscosity @ 0.5 sec ) 

0.523% AP30 - 45.6% water 0.26 ± 0.02 0.45 ± 0.05 
- 53.9% glycerine 

1% AP30 - water 0.48 ± 0.02 0.68 ± 0.07 
0.5% AP30 - water 0.72 ± 0.05 0.77 ± 0.11 
0.1% AP30 - water 0.80 ± 0.10 0.85 ± 0.14 

/-- -", 
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Figure 1: Terminal velocity and bubble shape as a function of equivalent 
radius for gas bubbles in a viscoelastic liquid: The Stokes 
and Hadamard lines are calculated for a Newtonian fluid with 
viscosity equal to that of the test fluid at zero shear-rate. 
The test fluid is 1% Separan AP30 in water. 
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ABSTRACT 

An experimental study of the deformation and breakup of water droplets 
induced by weak shock waves was conducted in a horizontal shock tube. 
Droplets with diameters between 350 fUll to 750 Ilm were allowed to fall through 
the tube and were exposed to the lateral flow created by a shock wave. The 
shock strengths chosen resulted in droplet deformation leading to either 
oscillation or breakup. The droplet deformation and breakup were recorded 
using high speed photographic techniques capable of interframe times as short 
as lOlls. 

The Webez' number range studied was between 2 and 8. In this range 
breakup occurred by the "bag" type mode. The deformation leading to this 
type of breakup was studied in detail and the process was divided into four 
stages. Each stage is described in terms of the physical changes of the shape 
of the droplet and a description of the flow causing the deformation is presented. 
The deformation leading to breakup was compared to the deformation leading 
to oscillation. The comparison of the two types of deformation resulted in the 
establishment of a breakup criteria based on a critical droplet thiclOless, 
where the critical thickness is defined as the deformed droplet width which. 
when measured, can predict if a droplet will either break up or oscillate. 

A simple model was developed which predicts the lowest velocity that 
will cause a droplet to break up. The model was based on the experimentally 
observed critical thickness. The critical velocities predicted by the model 
were found to be within the experimental accuracy of existing data. 

Introduction 

In physical processes droplets are frequently SUbjected to a suddenly 
imposed flow field which has been initiated by the passage of a shock front. 
The manner in which the droplets respond to the dynamic forces of the flow 
field is often of importance to the process involved. For example. in a 
combustor the response of the fuel droplets to the detonation shock is of 
importance. I If droplet breakup occurs. better fuel atomization is achieved 
and higher combustion efficiencies al'e realized. When a space vehicle 
traveling at supersonic speeds enters a cloud the impaction of droplets on 
the nose cone can severely damage the vehicle.2 • 3However. when the droplets 
enter the region behind the bow shock. breakup is possible and damage can 
be avoided. In a cloud. if a large droplet is shattered by a thunderclap it will 
produce several micron sized droplets which may result in an increased rate 



447 

of coalesence in the cloud. The above examples point to the need of understanding 
the mechanism of droplet breakup. By understanding what causes the breakup 
of a droplet. it may be possible to accurately model breakup and to predict 
when it will occur. To understand this phenomena it is necessary to conduct 
experimental studies which yield an accurate time history of deformation 
leading to either oscillation or breakup. 

The type of response exhibited by a droplet when acted upon by an 
imposed flow field depends on the ratio of the dynamic forces trying to deform 
the surface to the surface tension force which resists deformation from a 
spherical shape. The ratio of these two forces is defined as the Weber number. 
We = PI U02 R/IT. and is used to characterize the droplet response to a flow 
field. In the above expression. P I is the fluid density. Uo the flow velocity. 
R the droplet radius. and IT the surface tension. When We is small. of the 
order of O. I or less. the droplet will remain spherical. For Weber numbers 
above 0.1. but below a critical value. the droplet oscillates. The upper value 
for this range is called the critical Weber number. Weco and defines the 
upper limit for which droplet breakup will not occur. Above this Weber number. 
the droplet will breakup. first by the "bag" type of breakup and then. as the 
Weber number increases. by the shattering type of breakup. 

Droplet breakup has been studied previously with the objective of 
predicting the critical velocity for breakup. predicting breakup time. or 
determinin~ the mechanism of droplet shattering. Lane, 4 and Hanson. Domich. 
and Adams have studied breakup and presented experimental correlations for 
the lowest critical breakup velocity around a' droplet. The lowest critical 
breakup velocity is that which causes the "bag" type mode of breakup. The 
breakup velocities, Uc. for droplets of the same liquid are represented by the 
relationship Uc

2D = constant in which D is the droplet diameter. The results 
of the two studies differ, with Lane obtaining consistently lower critical 
velocities than those found by Hanson, et al. The reason for this discrepancy 
will be discus sed later. 

Various studies of droplet shattering have been conducted. Taylor6 

studied the breakup of droplets due to shock waves and the breakup of droplets 
accelerating in a uniform flow field. 

Engel
7 

studied the response of droplets to a flow, where the Weber 
number was sufficiently high to shatter the droplet. Engel described the 
change in shape of a droplet as it shattered and divided the changes into stages. 
Engel found that the droplets flatten. then reach a plateau where the flattening 
ceases and then the droplet shatters. The plateau is attributed to surface 
tension acting against further flattening. 

Simpkins and Bales
8 

examined the droplet breakup for various Weber 
numbers. For 7 < We < 50 they found droplet breakup occurred by the "bag" 
type mode. At higher Weber numbers droplet shattering occurred. Shattering 
was attributed to Taylor instabilities growing along the droplet surface rather 
than boundary layer stripping. 

Waldman. Reinecke, and Glen 9 studied droplet shattering by means of 
x-ray photography. In this manner. they could see inside the droplet mist 
and determine when the droplet had disintegrated. From these experiments 
they obtained a droplet breakup time for various Weber numbers. 
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Analysis of droplet breakup and deformation have also been made. 
Hinze 10 developed a linear model based on the dynamic pressure exceeding 
the surface tension at the stagnation point by a factor, determined experimentally. 
His model allows only small variations from the spherical droplet shape. 
Gordon 11 developed a model to predict breakup time for a droplet breaking in 
the "bag" type mode. From this model he predicts a droplet diameter for a 12 
given velocity, below which breakup will not occur. Harper, Gruber and Chang 
have developed a theory based on perturbation methods. Their model predicts 
that for high Weber number situations the droplet surface is susceptible to 
instabilities. When the growth rate of the instabilities is much faster than the 
aerodynamic deformation the instabilities cause the droplet to shatter. The 
instabilities are assumed to beTaylor instabilities. The agreement, between 
the theories and experiment in all the above studies is, however, not good. 

From previous work, it can be seen that detailed information concerning 
the mechanisms of the "bag" type breakup is lacking. No studies of the change 
of the droplet shape similar to that of Engel, for shattering, have been made. 
Furthermore, the critical point, when it is certain that a droplet will breakup, 
has not been determined. The objective of this study was to characterize 
droplet deformation leading to breakup and to establish the necessary shape 
condition to determine if a droplet will oscillate or breakup. Based on this 
criterion, a simple model was developed which appears to correctly predict 
the critical velocity for breakup. 

Experiment 

(i) Apparatus 

A shock tube was used to create the desired uniform flow conditions. 
The tube was constructed of seamless aluminum tubing having an inside 
diameter of 6.35 em. The shock tube consisted of four sections: a 183 cm 
driver section; a 170 cm section located upstream of the test section; a 35.6 cm 
interchangeable test section; and a 173 cm section downstream of the test 
section. The test section had a viewing port and light window to permit direct 
light illumination located 180· apart. Both the viewing port and the light window 
were covered with thin glas s. The test section was designed to permit a stream 
of droplets to fall unimpeded through the center of the test section. The shock 
tube was supported by means of steel rails and rigidly held in place by U- bolts. 
The mounting system assured accurate alignment of the shock tube and a 
minimum transfer of vibration along the tube wall. The shock tube is shown 
schematically in Figure l. 

The diaphragms used to create the shock waves were of 0.019 mm thick 
cellophane. The cellophane was supplied by FMC Corporation, American 
Viscose Division. The diaphragm was held between two concentric circular 
pieces of aluminum which could then be fitted over the shock tube. The holder 
caused the cellophane to be stretched uniformly resulting in uniform rupture 
of the diaphragm even at pressure differences as low as 1. 25 psia. The 
diaphragm was ruptured by a needle located in the driven section of the shock 
tube. Positioning of the needle in the low pressure side eliminated the problem 
involved in sealing the opening for the needle. 

The shock pl·opagation velocity was measured by two time-of-arrival 
pressure transducers and associated electronic equipment shown schematically 
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in Figure 1. The transducers. Atlantic Research type LD-15, were located at 
equal distances upstream and downstream of the test section and were separated 
by a distance of 74.4 cm. The pulse produced by each transducer was amplified 
by a Hewlett Packard type 465A amplifier. The amplified signals were then fed 
into the start and stop gates of a Hewlett Packard 550 MHz Timer/Ceunter Model 
# 5327A where the time interval between the two transducers was recorded to an 
accuracy of ± 1 IlS. The rise time of each transducer was 1 IlS assuring accurate 
triggering of the timer upon the arrival of the shock front at each transducer. 

The droplets were produced in a continuous uniform stream by means 
of an oscillating capillary device. Jet perturbation was achieved by means of 
flow oscillation. Suitable flow perturbation was achieved by means of an 
immersible pump powered by an audio oscillator. The pump (Edmund Scientific 
Company, Catalog # 60,307) was driven by a Hewlett Packard Audio Oscillator 
Model #200AB. The droplets were uniform in size, equally spaced. and had 
a velocity component only in the vertical direction. 

The liquid jet was produced by forcing the liquid through a capillary tube 
with compressed air. The droplet diameters produced ranged between 350 Ilm 
to 750 Ilm for water. The driving pressure for all jets was that necessary to 
produce an approximately 1. 5 cm long laminar portion in an undisturbed jet. 

(ii) Photography 

In order to study deformation, a series of backlighted pictures taken 
at 10 IlS intervals were needed so that an almost continuous history of the change 
of the droplet shape could be obtained. This time interval corresponds to a 
framing rate of 10 5 pictures per second if a high speed cinephotographic technique 
was used. This rate far exceeded the speeds attainable with equipment available 
to us. An alternate approach was to take a single picture per test by means of 
a continuous delay single flash system. If the shock strengths were identical 
and droplet diameter the same then an equivalent framing rate of 105 fps could 
be achieved. A schematic of the system is shown in Figure 1. 

A General Radio type 1541 Multiflash Generator functions as a continuous 
delay unit when it is used to produce a single flash. The unit is capable of 
producing a single flash after a preset time delay which can be controlled by 
means of the flash interval control. The delay after the initial triggering can 
vary from 10 IlS to 1. 6 seconds in steps of approximately 5 IlS or larger. With 
this unit providing both the delay system and flash triggering system. the proper 
time interval for each deformation picture was conveniently obtained. The 
illumination for the pictures was supplied by a General Radio Strobotac type 
1538A. Flash duration was 0.8 IlS measured at 1/3 peak intensity. The short 
flash duration minimized blurring for each picture. 

The multiflash unit was triggered by the amplified pulse of a pressure 
transducer located 0.6 cm upstream of the initial droplet position. The transducer 
signal was amplified by Hewlett Packard Type 465A amplifier. The amplified 
transducer pulse represented an approximately 30 IlS delay after the shock front 
reached the droplet. The value of the flash delay was recorded by means of a 
Hewlett Packard Timer-Counter Model # 5327A. The delay was measured from 
the time of arrival of the shock front at the pressure transducer to the time when 
the stroboscope received its triggering pulse. The time interval was measured 
to within ± 1 IlS of the actual delay. 



Time 
Delay 

Solenoid 

ICjje~ ~. I 
TImer I I Pressure _ 

"rransducer:> .. I 

o Droplet Generator 

Transducers 

Mlcroflash 
Generator 

Figure 1-
ExperiMental Apparatus 

Timer 
Counter 

.r:
l.n 
o 



';' .. , ..... 

451 

Results and Discussion 

Observations were made of the response of droplets to various strength 
shocks. The droplets studied were both breaking and oscillating drops. Of 
principal concern in this study was the change in shape of the droplets due to 
the shock-induced flow field. Therefore, the droplets were studied independent 
of displacement. Several series of pictures were obtained for various com
binations of droplet diameter and shock-induced flow velocity. A typical series 
of deformation pictures for a breaking droplet are shown in Figures 2-4. The 
droplet shapes in these pictures are assumed to be axisymmetric because of 
the nearly axisymmetric flow field about each droplet. The following measurements 
and discussions refer to a meridian plane of the droplet. 

The negatives for each series of pictures were examined with an optical 
comparator using a lOX magnification. In this manner, the change of shape of 
a droplet from that of a sphere could be measured. The front and rear of the 
droplet did not deform in a similar way. However, for uniformity. measurements 
were made of the deformed droplet height, a. and the deformed droplet width, 
b. Some results of the deformation measurements are shown in Figure 5. In 
these figures the droplet height, a. normalized with the diameter, D, is plotted 
versus real time for several series of pictures. 

From examination of the deformation pictures and from the results of 
the measurements, it was possible to arrive at some conclusions about droplet 
deformation particularly, deformation leading to "bag" type breakup. With the 
understanding obtained from the deformation curves, it was possible to examine 
the deformation pictures and to establish four stages of breakup as well as a 
breakup criteria. 

Each set of curves presented in Figure 5 represent the deformation of 
equally sized droplets subjected to various flow velocities. It is seen in Figure 
5 that when Uo = 2640 em/sec. the 710 .... m diameter droplets do not breakup. 
but begin to oscillate. This curve will be discussed later; the concern of this 
discussion is the deformation leading to "bag" type breakup. 

As a general description, one can simply say a droplet flattens. becomes 
hollow, and then bags outward. This would. however. oversimplify droplet 
breakup. From examination of various series of droplet breakup pictures. it 
was possible to describe breakup in a more accurate manner. Droplet breakup 
was divided into four stages. and each stage was described in physical terms. 
The end of the fourth stage was reached when the bag. formed by the droplet. 
was broken. The time, after the passage of the shock wave. for the droplet 
to reach this point is defined as the breakup time. The four stages of breakup 
are described below. In all cases. the flow is from left to right. The flow is 
the result of the passage of a shock wave and is. therefore. similar to the flow 
about a sphere set impulsively into uniform motion. Dennis and" Walker 13 and 
others have shown that separation occurs almost immediately after the start of 
impulsive motion. All of our photographic observations were made at times 
when the flow had already become separated about the back of the droplets. 

Stage 1 is characterized by the immediate flattening of the rear of the 
drop as in Figure 2 when t = 54 .... s. The flat portion continues to grow until it 
reaches approximately one half of the initial droplet diameter. While the back 
of the drop is flattening, the front surface remains spherical. However, its 
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radius of curvature increases .. The end of this stage is reached when the sides 
of the droplet become straight. Stage 1 lasts approximately 10 % of the total 
breakup time. The overall effect of this stage is a general flattening of the 
droplet. 

During Stage I, the shock-induced flow cannot follow the droplet shape 
and separates from the droplet. The separated flow region is a low pressure 
region at the rear of the droplet and the flow velocity in this region is principally 
in the opposite direction of the main flow. However. the shock wave initially 
imparts an acceleration of about 108 cm/sec 2 to the droplet. The acceleration 
is opposed by the droplet mass which results in a pressure gradient in the 
droplet with the highest pressure in the front. The pressure at the rear of the 
droplet approximately equals the pressure in the separation region. To adjust 
to this situation, the liquid at the separation region must have an infinite radius 
of curvature or, it becomes flat. As time progresses, the flat portion grows 
upward from the rear stagnation point. The flattening of the drop is principally 
controlled by surface tension forces while the sole effect of the dynamic force 
is to increase the radius of curvature of the front surface. 

The onset of the second stage of deformation is characterized by the 
appearance of a ridge at the top of the front surface. separating the front from 
the sides. The ridge continues to grow in height and as it grows it has the 
effect of increasing the radius of curvature of the front surface. As the ridge of 
the droplet becomes higher. the front surface becomes flat except for a small 
spherical region about the stagnation point. While the front surface is changing 
shape, the rear portion of the droplet loses its flatness and gives the appearance 
of being drawn toward the front surface. At the end of this stage, the rear portion 
of the droplet becomes flat over its entire height. The end of Stage 2 of the 
deformation process occurs when the droplet appears to have deformed by being 
"squeezed" symmetrically by the flow field. Stage 2 lasts approximately 20% 
of the total breakup time. The overall effect of Stage 2 is to flatten the droplet 
to its minimum thickness. This stage corresponds to t = 154 jJ.m to t = 395 jJ.S 
in Figures 2 and 3. 

In the second deformation stage. the droplet is more directly reacting 
to the flow field about the droplet than during the first stage. During this stage, 
the recirculating flow behind the droplet begins to bring mass from the back of 
the drop towards the front. At the same time. the flow about the front surface 
brings mass to the top and bottom of the front causing the front surface to assume 
a larger radius of CUl·vature. This movement of mass from the front and rear 
of the droplet causes the ridge to form and to grow in height. As the ridge 
continues to grow, the recirculated flow possesses a larger velocity component 
in the negative x dix-ection than the velocity in the positive x direction possessed 
by the incoming flow which is moving almost vertically along the front surface. 
This flow situation causes the ridge to be pushed into the direction of the flow 
resulting in the front surface becoming flat except for a spherical region about 
the stagnation point. Finally, the ridge is forced forward, and the front of the 
droplet appears flat. 

Stage 3 corresponds to the flat portion of the curve in Figure 5. During 
this stage of deformation, the droplet goes through no noticeable external 
changes, all changes are internal. In this stage, the droplet appears to have 
a flat front. This results from the ridge formed during Stage 2 being forced 
forward. During this stage the region around the spher~cal portion of the droplet 
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bec<lmes deeper and a greater percentage of the droplet mass becomes located 
at the spherical area about the stagnation point and at the edge of the flattened 
droplet. At the end of this stage, the rear surface of the, droplet begins to 
move outward. Stage 3 represents approximately 12 % to 15 % of the droplet 
breakup time. The overall effect of Stage 3 is to transform an almost disk-like 
droplet into a hollow bowl with a hemispherical lump of mass located at the 
center. 

The third stage of deformation is a stage of internal deformation of the 
droplet. Once the flow causes the ridge to be pushed out past the front surface 
it becomes inevitable from observation that the droplet will ultimately breakup. 
When the external flow approaches the spherical region at the stagnation point, 
the flow moves around the sphere and is then deflected upward by the solid 
rear surface. The flow, however, cannot move around the droplet rim formed 
from the ridge and must bend into the direction of Uo ' This resuits in a circular 
flow region between the center sphere of mass and the rim of the droplet. The 
circular flow pattern scours mass from the back internal surface of the droplet 
until the ba'ck surface becomes so weak it begins to move in the direction of Uo ' 
The dynamic force then causes the onset of bagging. 

Stage 4 is the bagging deformation stage of the drop. This stage begins 
when the rear surface of the droplet moves in the direction of Uo ' The initial 
movement of the rear surface gives the drop a lenticular shape with the flat 
portion facing the 'flow. The rear of the droplet quickly moves outward giving 
the droplet the appearance of a bag with a heavy rim. In the center of the bag 
a stem may appear. The stem is the result of the mass at the center of the 
drop being so large that it cannot move at the same speed as the bag. As the 
bag moves outward, the mass is stretched giving the appearance of a stem. 
Droplet rupture occurs on the bag surface, breaking it into small droplets 
which are swept along with the flow. The stem and rim breakup into droplets 
at a later time. Stage 4 represents approximately 50 % of the total breakup 
time. 

In Stage 4, the rear surface of the droplet has become weakened in the 
region about the spherical mass at the stagnation point. The aerodynamic force 
causes the rear region to move in the direction of flow while the heavy rim 
remains relatively still. As the rear of the drop is forced outward, the rear 
surface becomes weaker and as a result the bag moves faster and becomes 
stretched. The bag surface when stretched becomes susceptible to instabilities 
and breaks. The rim and stem are also broken by flow induced instabilities 
at a time after breakup. 

The four stages discussed above describe droplet deformation leading 
to "bag" type breakup. By comparing the deformation of a breaking droplet 
to the deformation leading to droplet oscillation, it was possible to establish 
a criteria to determine if breakup occurs. The deformation of an oscillating 
droplet is shown in Figure 5 and corresponds to Uo = 2640 em/sec. This 
particular oscillating droplet is subjected to a flow velocity approximately 
corresponding to the critical velocity for a 710 IJ.m droplet. Oscillating droplets 
were found to deform in a manner similar to that described for a breaking 
droplet in Stage 1 and 2. However, once the droplet reaches its minimum 
thickness, b, corresponding to the maximum value of aiD, it rebounds and 
approaches a spherical shape, then overshoots this shape until it reaches a 
minimum value of a/D. The droplet then oscillates about its original spherical 
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shape. From our observations on both types of deformation. it was shown 
that the minimum thickness. b. of the droplet is the first clearly noticeable 
difference between CL breaking and oscillating droplet and can. therefore. be 
used as the basis of a breakup criterion. 

In Figure 5. the oscillating droplet reaches a maximum value of a/D 
equal to 1. 6. This corresponds to a droplet subjected to a flow velocity just 
below the critical velocity. For the breaking droplets represented in Figure 
5. the droplet thickness. b, corresponding to the flat portion of the curve, is 
less than the value corresponding to b for the oscillating droplet. In Figure 5, 
the curve corresponding to Uo = 3120 em/sec for the 470 iJ.m droplet represents 
a droplet subjected to a flow velocity just above the critical velocity. From 
this curve, it is seen that the minimum thickness of the droplet, corresponding 
to the flat portion of the curve. is a/D equal to 1. 6. It was. therefore. determined 
that if a water droplet attains a thickness corresponding to a height to diameter 
ratio of about 1. 6 or greater. the droplet will breakup. Using this criteria. 
it would not be necessary to follow droplet deformation through to breakup 
rather the value of CL/D reached in the second stage of deformation can be used 
to determine if breakup occurs. The concept of a critical droplet thickness 
corresponding a/l) was used to develop a model that can predict breakup for a 
droplet of a given liquid. This model is presented in the next section. 

Breakup Model 

When a droplet is deformed by a uniform flow field. caused by a shock 
wave. the front and rear deformation is not symmetric. However, when a 
bursting or oscillating droplet is deformed, it reaches a stage of deformation 
when the droplet appears to have been symmetrically deformed. At this stage, 
a nonbursting droplet will start to regain its spherical shape due to surface 
tension. while the front surface of the bursting droplet will continue inward and 
eventually the droplet will breakup by the "bag" type mode. By studying droplets 
of a given liquid both above and below the critical value of velocity for breakup 
for various droplet diameters a critical thickness can be determined for the 
droplet. If the droplet is compressed to a smaller thickness than the critical 
thickness it will breakup, but if it has a larger thickness it will oscillate. 
Therefore. by artificially" squeezing" a droplet to the critical thickness and 
at a time t = 0 imposing a uniform flow over the droplet we can, by examining 
forces on the fluid a.t the stagnation point of the droplet. determine whether the 
flow velocity is sufficient to cause breakup. If the flow velocity is less than 
the critical velocity, the surface tension force will push the front surface outward. 
If the flow velocity is greater than the critical velocity, the flow will push the 
front surface inward. and this would imply the droplet will breakup. 

The model considers a droplet in a uniform flow field that has been 
deformed from its spherical shape. The droplet is assumed to have been 
deformed as an oblate spheroid with the axis of symmetry parallel to the flow. 
A cross section of the model is shown in Figure 6. The distance Ro; is the 
amount of squeeze imparted to the droplet initially. By examining an element 
of fluid at the stagnation point and determining its motion due to the forces acting 
on the element a critical velocity for breakup is determined. 

Consider thE~ fluid in the vicinity of the forward stagnation point. It is 
assumed that some of the fluid will move as a solid body in response to the 
applied forces. It is further assumed that the pressure in the drop, acting on 
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surface Z (see Figure 6) is the order of the internal pressure of a spherical 
droplet at rest, or ~ 

ZlT 
Pz = Po+R ' 

o 
where P z = the internal pressure of the droplet. 

I 

The external pressure distribution on the front surface is equal to that 
about a sphere of radius, R. By limiting the surface of interest to an infinitesimal 
height about the stagnation point the external pressure simplifies to 

Z 

where Uo is the free stream velocity and P I is the density of the gas. With 
the result of Equation Z, the pressure on the external surface I is given by 

P l = 
where RI = R03 / HZ. 

P + £.!.. 
e R ' 1 

Making use of Equation Z we find the pressure difference on our infinitesimal 
element about the stagnation point to be 

1 Z ZlT (BZ 
.6.P=P l -PZ =zP I Uo +Ro RoZ- 3 

Equation 3 gives the pressure difference on the element in the X -direction. 
The pressure acting on the element in the Y-direction is considered to be zero, 
since the height of the element is considered to remain constant. 

Integration of the equation of motion of a fluid in a particle fixed coordinate 
system in the X-direction yields 

dU d Z d 
Pz ~V = -AAP - d tt V 4 

where V = ABc, is the volume of fluid assumed to move as a solid body, A is 
the surface area and Bc is its length. The other quantities appearing in 
Equation 4 are B = R (1 + ;), U = dB/d t = velocity of volumetric element of 
fluid and Ro; = chanje of distance from the center of droplet to the front surface 
due to deformation. Substitution into Equation 4 gives 

Z 
Uo ZlT 

Ci'""Z (1 + ;) - CR 3 P Z 
o 0 ~+ Z_l)_UOZ 5 

1+ 3 K. 
PZRo 

In Equation 5, the experimental results obtained by Simpkins and Bales 8 and the 
present study are used, which indicatEls that initially the particle displacement 
can be approximated by 

-4 where K= 10 . 

Z Z 
X.:I = K U t / R , 

'<1 0 0 
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Equation 5 can be solved numerically by means of a fourth-order 
Runga-Kutta formula modified by Gill. The equation carries one constant, C, 
which must be evaluated by other means. If Equation 5 is solved for the case 
of a stationary drop, by making Uo equal to zero, and the resulting equation 
linearized i~ is found that 

6 

This equation represents the harmonic vibrations for the drop. If C = .5 the 
circular frequency equals that of the frequency of the lowest mode of vibration 
of a spherical droplet. 

An examination of the effect of the constant C in the solution of equation 
6 showed that it principally effected the period of oscillation of the drop, not 
the amplitude of oscillation which change by less than 5 % when C was varied 
from. 125 to .75. The value of C = .5 was therefore adopted so that the model 
represents the vibration of a drop when Uo goes to zero. Equation 5 can now 
be solved once the initial conditions are established. 

Our model, as stated previously, is based on a critical value of S. This 
initial val ue we shall call Sc. As stated when time t = 0 the droplet has the 
thickness S = Sc and as the velocity field is imposed the front surface will respond 
accordingly. When the velocity is equal to the critical velocity the front surface 
does not move therefore the slope at this point, S', is equal to zero. To further 
restrict the zero slope criteria we impose the condition that S' remains zero or 
gil = O. Applying this second condition to equation 5 and combining terms 
equation 5 becomes 

7 

where Uc and Sc are the critical velocities and displacements. Examination of the 
denominator in Equation 7 shows the second term to be approximately an order 
of magnitude smaller than the first term and is neglected. Equation 7 can then 
be transformed into 

8 

where Sc must always be negative. 

Equation 8 can be used to determine the critical velocities for droplets 
of different fluids, if Sc is known. Our experiments have shown that tc is the 
same for a wide range of diameters of droplets if the fluid is the same. The 
time to reach this value will be different owing to the change in period due to 
the change in size but the value reached will be the same. The critical thickness 
ne"ed only be found once for each fluid under consideration. 

In our experiments the critical value of /Scl was found to be . 56. Sub
stitution into equation 8 yields 

2 5 Uc D = 3.92 x 10 
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for a water drop in air. The units of Uc and D are in the cgs system. This 
equation is plotted in Figure 7. Along with this curve are some experimental 
points obtained by Lane and Hanson et al. It can be seen that the curve fits the 
data points as well as the experimental relationships determined in the above 
studies. 

By using the value of Sc for water and applying it to alcohol, Equation 8 
will yield the curve plotted in Figure 7. Also shown there are the experimental 
data of Lane and Hanson 5 et al. 

Examination of Figure 7 shows that our curves more closely approximate 
the data found by Lane 4. This discrepancy may be related to the manner 
Hanson et al 5 supported their drops. The drops were supported by acoustic 
radiation pressure which was never turned off. The ratio of the acoustic radiation 
pressure to the dynamic pressure is of the order 10- 2 14 The acoustic 
pressure can therefore, not be ignored when examining the pressure at the edges 
of the droplet. This could have resulted in an additional cohesive force on the 
drop which then required a larger velocity to cause droplet breakup. 

Conclusions 

Observations of the deformation of oscillating and breaking droplets 
caused by the flow field associated with a shock wave are summarized below. 

1. The deformation leading to breakup by the "bag" type mode of 
breakup can be divided into four basic stages of deformation: Stage 1, surface 
tension controls the droplet shape; Stage 2, the flow around the droplet causes 
it to change shape eventually giving the droplet the appearance of being "squeezed"; 
Stage 3, the droplet goes through internal changes which cause it to become 
hollow; Stage 4, the flow pushes the rear of the hollowed droplet outward causing 
it to form a bag and then burst. 

2. An oscillating and a breaking droplet will be initially deformed in a 
similar manner. However, the breaking droplet will be compressed to a greater 
extent. This observation leads to a breakup criterion based on a critical value 
of aiD which can be related to a critical droplet thickness, b. 

3. Using the critical thickness as a criterion for breakup, a model was 
developed which predicts the critical breakup velocity for any given droplet. 
The critical thickness found for water was substituted into the model and predicted 
the relationship Uc 

2 D = 3.92 x 10 5 for water. Using the same critical thickness 
for alcohol droplets the model predicts Uc 2 D = 1. 2 x 105. Both expressions 
agree closely with existing experimental data. 
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THE ROLE OF DROP DYNAMICS IN THE 

PHYSICS OF CLOUDS AND RAIN 

Morris Neiburger, In Young Lee, Elena Lobl, and Lawrence Rodriguez, Jr. 
Department of Meteorology, University of California, Los Angeles 

Abstract 

Condensation from water vapor onto nuclei in rising air 
produces clouds of numerous small drops having very small ter
minal velocities. One of the ways these small' drops may grow 
to raindrop size is by collision and coalescence. Both theo
retical computations and laboratory experiments show that the 
radii of uncharged drops must exceed 20 ~ before they are ef
fective collectors. 

The methods of computation of collision efficiencies are 
discussed and the results compared with the results of exper
iments to evaluate the collection efficiencies of cloud drops 
with and without electric charges. The way these data enter 
into studies of the formation of rain is discussed. 

QUALITATIVE DESCRIPTION OF PRECIPITATION PROCESSES 

Broadly, the processes of formation of clouds and precipitation may be 
divided into the dynamiC processes, concerned with the motions of air cur
rents which give rise to the general conditions for the formation of clouds 
and precipitation, and the microphysical processes, concerned with the growth 
of the individual precipitation particles from gas phase by condensation and 
from smaller cloud particles by collision and coalescence. There is, of 
course, a strong interaction between the two kinds of processes. The upward 
motions determine the rate of cooling due to expansion and thus control the 
rate at which the microphysical processes go on. The release of latent heat 
in condensation and the drag of the particles formed affect the buoyant forces 
which determine the upward motion. While the dynamic processes are prerequi
site to the microphysical ones, it is convenient to discuss the processes of 
particle growth first. and subsequently to turn to the larger scale setting 
in which it occurs. 

It is a fact of common experience that clouds can remain in the sky for 
long periods without precipitating. Since clouds consist of water particles, 
liquid or solid. which are heavier than air. this phenomenon requires expla
nation. Usually it is that the particles are being sustained by the upward 
moving current of air that is causing the cloud to form. Sometimes the up
ward speed is not sufficient but the particles evaporate as they fall from 
the cloud base into unsaturated air and vanish into vapor in a short distance. 

Measurements show that the radii of drops in nonprecipitating liquid 
clouds are in the range 2 to 20 ~m with the modal radius usually between 5 
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and 10~. These drops have terminal velocities ranging from 0.05 to 5 em 
S-l, so that very slight upward flow of air would be required to offset their 
falling. Further, it has been shown that if drops of these sizes fallout of 
a cloud into air with 90 per cent relative humidity they evaporate before 
they go as much as one meter. 

Rain drops, on the other hand, range in radii from 0.1 mm to 3 mm, with 
terminal velocities from 70 em s-l to 9 m s-l. If the updrafts are not 
stronger drops this size will fall relative to ascending air and may reach 
the ground before evaporating, even when low humidities prevail below the 
clouds. 

The key difference between cloud and precipitation is thus the particle 
size, and the central question in precipitation physics concerns the condi
tions under which the particles can grow to precipitation size. 

The process of condensation by itself can be shown to be much too slow 
to explain the rates at which precipitation forms. For instance, the develop
ment from clear air to showers in the course of a summer day may occur in a 
matter of an hour or less. While condensation results in very rapid growth 
of drops to the size of average cloud drops, say 10 microns, continued growth 
is progressively slower, and with the number of drops which form there is not 
enough water vapor available for millimeter drops to be produced by ~ondensa
tion alone. 

The two ways that cloud particles can grow rapidly to precipitation are 
(1) by collision and coalescence, and (2) by the three phase, or Bergeron 
process. The nature of the first process is obvious: if the cloud drops are 
not of uniform size the larger ones will fall relative to the smaller and 
tend, to overtake and capture them. After collecting one small drop the 
large drop becomes larger, falls faster, and is more effective in collecting 
others. But as we shall see, because of the tendency for the air to carry 
drops around each other, there are limitations on the initiation of this 
process. 

The three phase process is based on the fact that drops remain liquid 
at temperatures below O°C, and ice crystals, if they form, are much fewer in 
number than the liquid drops. ' Since the equilibrium vapor pressure over ice 
is lower than that over water at the same (sub-zero) temperature, there is a 
strong gradient of vapor density away from the liquid drops toward the ice 
crystals, so that rapid transfer of water occurs from the drops, which evap
orate, to the crystals, which quickly grow large compared to the pre-existing 
supercooled drops. The crystals fall relative to the remaining small drops 
and collect them. Process (2) thus may initiate process (1), and the two 
acting together can readily lead to tIle formation of precipitation-sized par
ticles in subfreezing clouds. In warm clouds which precipitate, collision 
and coalescence alone must be the activating process. There is considerable 
evidence that even in clouds that extend upward into sub-zero temperatures 
frequently precipitation is initiated by the collection process. 

Since not all drops that are brought together by their relative motion 
coalesce, the processes of collision and coalescence must be considered sep
arately. The collision process involves the dynamics of the flow of the air 
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in which the drops are imbedded and the dynamics of the drops in response to 
the drag forces exerted by the air. 

We shall first discuss briefly why condensation leads to the formation 
of clouds with numerous drops too small to fall as precipitation. Then we 
shall examine the conditions under which the collection process will initiate 
precipitation. Finally, we shall discuss the meteorological factors that may 
produce these conditions. 

CONDENSATION AND THE FORMATION OF CLOUDS 

While homogeneous nucleation requires vapor pressures several times the 
vapor pressure in equilibrium with a plane water surface, clouds form in the 
atmosphere with relative humidities very little above 100 per cent. This 
is because in the atmosphere particles of haze or dust are always present to 
serve as nuclei for heterogeneous condensation. These particles are predom
inantly in the size range 0.005 ~ to 5~. The lower limit is due to the 
tendency for smaller particles to agglomerate rapidly because of Brownian mo
tion. Unless there is organized upward motion, particles larger than one mi
cron tend to settle out even though the effect of turbulence is to diffuse 
them upward. 

Typically the number of particles is greatest in the smallest sizes and 
decrease rapidly with size. The larger ones and those composed of soluble or 
at least wettable materials are most favored as nuclei for condensation as 
liquid drops. Condensation on these nuclei takes the form of liquid drops 
even at temperatures below O°C. Only a few of the particles are effective as 
nuclei for deposition of vapor directly in the form of ice or for freezing of 
liquid drops, and that only at temperatures considerably below O°C. We refer 
to the latter as ice-forming nuclei (IFN) and the nuclei for condensation at 
slight supersaturations as cloud condensation nuclei (CCN). As indicated 
previously, the effectiveness of the three-phase preCipitation process is due 
to the small· number of IFN in comparison to the number of CCN. The possibil
ity of the collection process producing precipitation arises from the fact 
that the varying size and composition of CCN lead to a dispersion in the size 
of drops produced by condensation. 

The rate of growth of a single drop of radius a growing from a soluble 
nucleus of equivalent radius ao,is to a very close approximation 

da FD ( [ La 2a n4nn a 3p J ) _ _ __ e _ e (T) exp _ + __ _ w 0 s 

d t pR Ta S R T pR T.a m a 3 p v v v s 

(1) 

where F is the ventilation factor, Q is the compensated diffusion coefficient, 
p. is the density and a the surface tension of the drop, Ps and ms are the den
sity and molecular weight of the solute, !v the gas constant for water vapor, 
~ and ~ (T) the ambient water vapor pressure and its value in equilibrium 
with a plane water surface at the ambient temperature ~, mw the molecular 
weight of water, a - (L p a/K T) (da/dt) is the increase in the temperature of 
the drop above T due to the release of latent heat of condensation k, K is the 
coefficient of thermal conduction, n is the number of ions dissociated per 
molecule of solute, and ~ is the osmotic coefficient. The argument of the 
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exponential is usually sufficiently small for the series expansion to be lim
ited to the linear. terms. In this case the growth rate can be expressed ex
plicitly, 

~ -~ [5 -~ + \] 
dt a a a 

(2) 

where S - ele .• 1 is the supersaturation, a - F D R K T2 e Ip (R 2KT3 + F D 
2 s v s v 

L e), e - 2 alp R T, and y - n ~ m a 3 Ps / ms p. As the drop grows the s v w 0 

third term and subsequently the second term -- the solute term and the curva
ture term, respect:ively - become negl:\.gible, and for sufficiently large drops 

da Sa 
dt - a (3) 

In the early stages, condensation on nuclei will occur only if the su
persaturation ill !Iufficiently large. From equation (2) the condition is 

e y 
5 > - - -3 ' 

a a 

and since y is proportional to the nucleus volume, the supersaturation re
quired is lower for larger CCN than for smaller. (For insoluble but wettable 
nuclei the condition is S > ela , and the same conclusion holds.) o 

If, as is al.ways the actual case, CCN of various sizes are present, 
condensation on the large nuclei will keep the supersaturation from rising to 
the high values required for condensation on the small ones. Thus only the 
larger and more soluble CCN are activated and form cloud drops. Even so the 
number of nuclei that are effective is usually in the range 50 to 1000 per 
cubic centimeter. 

With more than one drop present the conditions under which equation (1) 
is valid are not: 51trictly met. However it has been demonstrated that even 
with 1000 drops per cubic centimeter the drops are sufficiently far apart rel
ative to their size not to influence each other's growth directly, but only by 
affecting the degree of supersaturation. 

Once the drops become large enough, the larger drops grow less rapidly 
than the smaller, as shown by equation (3). Thereafter the spread of cloud 
drop sizes becomes narrower and the rate of drop growth decreases as time goes 
on. Between these effects and the depletion of available water vapor the 
drops that are formed by condensation never are larger than a few tens of mi
crons in radius. 

As an illustration of the growth of cloud drops on a typical. spectrum of 
CCN, Figure 1 shows the results of a computation carried out by Neiburger and 
Chien (1960) several years ago. The curve labeled "t - 0" shows the ini
tial distribution assumed for the nucleus sizes. It is based on the summa
ries of particle size measurements reported by Junge (1963). For convenience 
all the nuclei were assumed to be NaC1. The air was assumed initially to have 
temperature 16°C B.nd relative humidity 75 per cent at 1000 mb pressure, and to 
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cool adiabatically as it rose with vertical velocities approximating those 
measured in cumulonimbus clouds (Byers and Braham, 1949). Figure 1A shows 
the variation with time of the saturation ratio and of the drop sizes for the 
initial sizes into which the nuclei were grouped, and Figure lB shows the 
drop size distributions after various elapsed times. Once the relative hu
midity slightly exceeded 100 per cent the drops on nuclei 0.1 ~ or larger in 
radius grew rapidly, while those on smaller nuclei did not continue to grow. 
Shortly after the cloud formed, the separation between cloud drops and inac
tivated nuclei became evident, with modal radius of the cloud drops about 7 
llm. At the end of the computation, corresponding to a rise of the air parcel 
to 9 km, the modal radius was 20 llm. Of the approximately 100 per cubic cen
timeter that were activated, about 70 had radii greater than 16 ~, but only 
about one per liter was greater than 22 llm. 

Similar computations with various realistic assumptions about CCN spec
tra and cooling rates have shown that condensation of liquid drops does not 
produce precipitation, even for very deep clouds. It has been found, further, 
that turbulent fluctuation in updraft velocity and variations in nucleus com
position do not lead to a broadening of the spectrum produced by condensation. 
However, the introduction of additional nuclei during the entrainment of envi
ronmental air into the cloudy updraft and the penetration of successive ther
mals through their predecessors appear to be able to explain the development 
of sufficiently disperse drop size distributions to initiate the collection 
process. 

THE THEORETICAL COMPUTATION OF COLLISION EFFICIENCY 

As a drop falls the air ahead of it is pushed out of the way, and if a 
smaller droplet is contained in that air it likewise will tend to be carried 
out of the path of the larger drop. Because of the inertia of the droplet, 
the viscous drag exerted by the air may not pull it far enough, and if the 
droplet is not too far from the axis of fall of the drop a collision may oc
cur. The ratio of the number of droplets that collide to the number in the 
volume swept out by the drop is called the collision efficiency Es' S±milar
ly, the fraction of the droplets that the drop collides with that coalesce 
with it is called the coalescence efficiency E~, and the ratio of the number 
of droplets with which the drop coalesces to the number in the volume it 
sweeps out is called the collection efficiency!. Obviously, E - Es • Et • 

The theoretical evaluation of E may be treated adequately by consider
ing the dynamiCS of two rigid spheress moving in a viscous medium. For the 
size of drops we are considering both the departures from spherical shape and 
the internal circulations are negligible. Similarly, the drops are generally 
far enough apart for the influence of the other drops on the motion of an in
teracting pair to be ignored. Nevertheless, because of the non-linear terms 
in the Navier-Stokes equations and the difficulty in satisfying the boundary 
conditions on the surfaces of two bodies the problem is not amenable to solu
tion without assumptions or approximations. 

flow f~:~dP~~b!:: ~irc~~:!!~h!s ~~O!;~:s:W~e::::::' a;i~~~i~oS::~~::~n:n~he 
from this the force exerted by the air on the drops, and second, to compute 
the trajectories of the drops in response to these forces. By computing the 
trajectories for different initial displacements of the small drop from the 
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vertical through the center of the lar.ge one the grazing trajectory that 
brings them just into contact can be determined. If the initial displace
ments for the grazing trajectory is Yc and the radii of the large and small 
drops are A, a, respec~ively, 

1T Y 2 
E • __ -,c~, 

S 1T (A + a)2 
(4) 

where y • Y /A and p • a/A. The non'~imensional critical displacement y is c c c called the linear collision efficiency. 

One simplification. valid for vl~ry small p, is the assumption that the 
flow pattern is determined only by the large drop and is unaffected by the 
small one. Even with this assumption the flow field cannot be determined 
rigorously because of the non-linearity of the Navier-Stokes equations. 
Using an analog computer, Langmuir and Blodgett (1946. Langmuir 1948) carried 
out the computationa for two limiting cases for which the equations can be 
linearized, very low Reynolds numbers, for which the inertia terms can be 
neglected, and very high Reynolds numbers, for which the viscous forces can 
be ignored and potential flow obtains. For the intermediate values that are 
of most interest in cloud physics they adopted an interpolation scheme. 

Fonda and Herne (Herne 1960) repeated the computations with a digital 
computer. Apart from the improved computational accuracy the only change 
they made was to allow for the finite size of the small drop when determining 
whether or not there was a collision. Both they and Langmuir and Blodgett 
used the Stokes law for the drag exerted by the air on the small sphere. 

When the size of the small drop is comparable to that of the large one 
the effects of both on the flow patterns must be considered. Pearcey and Hill 
(1957) were the first to attempt to do so. They superposed the Oseen flow due 
to each sphere separately to obtain the flow pattern for the two moving 
spheres. It can be shown that the resulting drag forces are equivalent to 
those that would be experienced by each sphere if it is moving with its own 
velocity relative to the flow induced by the other. Since the Oseen approxi
mation is poor close to the drops, where the interaction of the drops has most 
influence on the collision efficiency, the values of E obtained by Pearcey 
and Hill were not reliable. s 

For sufficiently small drops for the Stokes linearization to hold 
Hocking (1959) obtained solutions that fit the boundary conditions at the 
surfaces of the two drops rigorously. Because the equations are linear he was 
able to superpose solutions for spheres moving along and perpendicular to 
their line of centers to obtain the solution for relative motion in an arbi
trary direction. His solutions were expressed in terms of series of which he 
was able to determine only a few terms in evaluating the drag forces. Davis 
and Sartor (1967) and subsequently Hocking and Jonas (1970) obtained improved 
solut~ons for the forces ~n this case. They found that ~f the Stokes equa
tions are valid however close together. the drops come collisions cannot occur 
because the force opposing their approach is inversely proportional to the 
distance between their surfaces. Once the distance becomes commensurate with 
the mean free path of the molecules of air viscous theory cannot apply. Davis 
(1972) has considered the gas kinetic effects and found that they lead to 
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somewhat larger values of E for A < 20 ~m than those found by Davis and 
Sartor and Hocking and Jona~. It is presumed that these results are the best 
evaluations of Es for very small A. 

For larger drops, for which Stokes' approximation does not hold, most 
of the recent evaluations of E have used the superposition technique with 
numerical solutions of the s complete Navier-Stokes equations for the flow 
fields induced by the individual drops (Shafrir and Neiburger 1963 •. 1964; 
Neiburger 1967; Shafrir and Gal-Chen 1971; Lin and Lee 1973; Beard and Grover 
1974). The exception is the work of Klett (1968) and Klett and Davis (1973), 
in which an attempt is made to fit the boundary conditions at the surfaces of 
the two spheres with a solution of Carrier's modification of Oseen equations. 
It is interesting and reassuring that the various procedures, while leading 
to some differences in the values of Es' do not give markedly different re
sults. 

Because all the theoretical evaluations of E involve assumptions and 
approximations it is desirable to check their s validity with experiment
al data. We shall discuss our experiments using the UCLA Cloud Tunnel later, 
and in the next section present a comparison of various computational values 
of Es with earlier experimental results. 

COMPARISON OF COMPUTED COLLISION EFFICIENCIES 
WITH EARLIER EXPERIMENTAL RESULTS 

The set of collision efficiencies computed over the most complete range 
of cloud drop sizes is that of Shafrir and Neiburger (1963, 1964) and 
Neiburger (1967). An extended and refined version, which we shall refer to 
as "modified S-N" values, is used here. As we shall see, these values cor
respond fairly closely to the results of other computations and fit the re
sults of experiments. 

For convenience in interpolating to other drop sizes and in using the 
values in drop growth computations it is convenient to have an analytic ex
pression for the collision effiCiency. Berry (1967) presented a formula that 
fit the S-N values fairly well and Scott and Chen (1970) developed a somewhat 
less complicated expression. In addition to being very complicated their for
mulas do not include the values due to wake effects for nearly equal drops. 
Lee (Neiburger, Lee, Lobl and Rodriguez, 1974) has developed a simpler equa
tion that fits closely the modified S-N values over the entire range. The S-N 
values shown in the following are those obtained from that equation. 

Experiments give the value of the collection efficiency E rather than 

~:: ~~!i!:!~~c:f!!~~:~~~C~S'E£~:YU:~~~~ b~e:~~!:~a~oe~:l::~i~::eO~~Yh!!e 
been carried out by Picknett (1960), Woods and Mason (1964, 1965), Beard 
(1968, 1970), and Beard and Pruppacher (1968, 1971). In most of these exper
iments the collector drops were generated by a vibrating hypodermic needle, 
which may have led to them having some electric charge. Usually the technique 
used in determining E gave a lower bound rather than a precise value. Just as 
the computed values of E , which we shall designate E , are subject to uncer-
tainty because of s assumptions and approximati8ns, the experimental 
values of E, which we shall call E , are likewise uncertain because of experi
mental difficulties and the differ~nce between the conditions of the 



.,', 

472 

experiments and those in natural clouds. As we shall see, several computa
tions using different approximations yield nearly the same values of Ec' and 
a number of experiments give values of E that are close to the com-
puted values. We may thus be inclined tS conclude that for those experimen
tal conditions E1 ~ 1 and the computed Ec are good approximations of E. 

Experiments using the UCLA Cloud Tunnel to evaluate E have given values 
of E considerably smaller than E for the same values of A and a (Neiburger, x c Levin and Rodriguez, 1972; Levin, Neiburger and Rodriguez, 1973). The dif-
ference between these experimental results and the earlier ones was attributed 
to the possibility that in the cloud tunnel, in which atmospheric conditions 
are more closely simulated than in earlier experiments, the coalescence effi
ciency Et is much smaller than one when the collector drop has no electric 
charge. 

In this brief presentation it is impossible to review all of the re
sults. In Figure 2 data are compared for some values of A for which the re
sults of several computations and some experiments are available. The values 
of Ec and Ex are shown for fixed values of A as a function of p. 

For A - 30 ~ (Figure 2A) six computations are available, three in which 
the Stokes approximation was used, two computed with the superposition tech
nique, and one in which the modified Oseen approximation was used. The latter 
three computations give generally higher values of Ec than the first three, 
but for the most part the shapes of the curves are similar and the values do 
not depart radically from each other. Only one series of experimental re
sults (Picknett ],960) are available for this value of A. (The results of 
Woods and Mason [1964] for A • 33.5 ~ correspond closely to Picknettts for 
30 ~.) Of the computations using the Stokes approximation Hockingts earlier 
results agree better with Picknettts experiments over the small range of p 
for which they were performed than the later, more accurate, computations by 
Davis an4 Sartor and by Hocking and Jonas. Indeed, they also fit them better 
than the other three computational results, which take account of the non
linear terms and should be better even for this small a value of A. However, 
since the experiment gives a lower bound for E rather than a precise value, 
it is possible that the true value of E is closer to the Klett-Davi.s, Lin-Lee 
and S-N values. 

For A-50 lJm (Figure 2B) the two other computations give sHghtly 
higher values than the modified S-N ones as represented by the analytic for
mula, but the experimental values, which are available only for large p, are 
closer to the S-N. Similarly, for 70 ~ (Figure 2C) the curve representing 
the Klett-Davis computation is everywhere above the S-N curve but the experi
mental points fil: the S-N values. The results for 40 lllII and 60 lJm, not il
lustrated, are the same as for 70~. For 80 ~ and 90 lJm, for which other 
computations are not available, the experimental points also fall almost ex
actly on the S-N curve. 

Beard and Grover (1974) carried out new computations of E using the 
superposition technique with flow fields given by Le Clair, et 11 (1970), and 
compared the results for fairly large A and small p with experiments Beard 
carried out using the UCLA wind tunnel. In Figure 2D their data for two val
ues in the range .that our computations apply are compared with ours. The 
ranges covered by l:he probable errors are shown by the shaded rectangles, and 
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it is seen that their results fall in the upper corners of the experimental 
error rectangles and ours in the extreme lower corners. This again suggests 
that for small p and large A the correct values of E may be somewhat larger 
than our computed values. 

In summary, 
and the available 
S-N computations. 
ues of E be used 
140 llm. c 

the results of the various computations are quite similar, 
experimental data on the whole agree well with the modified 
It is therefore suggested provisionally that the S-N val

for the collision efficiency of drops in the range 20 to 

CLOUD TUNNEL EXPERIMENTS WITH COLLECTOR DROPS 
HAVING LITTLE OR NO ELECTRIC CHARGE 

In our cloud tunnel experiments the conditions of natural collection in 
clouds are simulated more closely than in other experiments in several ways. 
The air rises through the tunnel at the speed of the terminal velocity of the 
collector drop, so that it remains motionless as the cloud of droplets is 
carried upward in the air stream. Thus, relative to the air the collector 
drop falls at its terminal velocity through the cloud of droplets that are 
also falling at their terminal velocities. The ambient relative humidity is 
about 100 per cent, so that evaporation or condensation plays little or no 
role. The cross section of the tunnel is large enough so that there is prac
tically no influence of the walls on the flow pattern near the center. There 
is practically no externally induced turbulence. 

To produce collector drops with essentially zero electric charge a 
grounded hypodermic needle was used in our first series of experiments. For 
later experiments a drop generator was constructed, using modifications of 
the design by Abbot and Cannon (1972), in which the voltage on a hood or 
shield determines the charge on the drop. With zero hood potential the charge 
is practically zero. 

groupe!na~:~!:i!st~~ ~~:r:::g:a!~e~h~irEx ~~i~n~h:~~e:i~~l!:~~~rp~r~~:,com_ 
pared with the computed collision efficiency E. Except for a few instances 

c of A in the smallest size range, Ex is much smaller than E. In previous dis-
cussions of some of these data (Neiburger, Levin and Rodriguez 1972; 
Levin, Neiburger and Rodriguez 1973) it was suggested that the explanation of 
the difference was that the coalescence efficiency Ei was small for the con
ditions of the experiments. The difference between these results and those 
of previous experiments was attributed to the possibility that in the earlier 
experiments the collector drops had sufficient charge to overcome any inhibi
tion of coalescence. 

It was reasoned that if this is true an electric charge could be applied 
to the collector drops that would be sufficient to raise the coalescence effi
ciency to unity without being so large that it would affect the motion of the 
drops and thereby increase the collision efficiency. The variation of E with 
drop charge Q would then be such that it would first increase with Q until Ei 
reached unity, then remain constant at E until Q became so large that E 
would be affected. To test this hypothe~is experiments were carried outS in 
the cloud tunnel with small collector drops having various magnitudes and 
polarities of electric charge. 
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CLOUD TUNNEL EXP~:RIMENTS WITH CHARGED COLLECTOR DROP S 

The hypothesis postulated at the end of the preceding section may be 
expressed as follows: For each value of A and a there exist two values of 

> E • c 

such that when the charge on the collector drop is smaller than 
1~R, < 1; when Ql :s: Q :s: Q2' ER, - 1, Es - Ec; and when Q > Q2' 

The effect!1 on E of charge on a collector drop interacting with un
charged droplets has s been evaluated previously (Semonin and Plumlee 1966) 
only for the case of A - 30 ~ and a • 5~. They reported that a slight in
crease in E began when Q exceeded 6.10-7 esu; their graph shows very little 
increase s for Q less than 3.10-6 For a - 10 ~, the value frequently 
used in our experiments, some idea of Q2 may be obtained from the computa
tions they carried out with charges on the collected drops as well as the 
collector. For charges with opposite sign the threshold charge on a 30 ~ 
collector drop interacting with 10 ~ droplets bearing charges 1/9 as large 
was about 2.10- 5 esu. 

The influence on E of a charged drop collecting uncharged droplets 
·wou1d be due to the dipoie moment of the droplet induced by the field due to 
the charged drop. Since the induced dipole moment is a function of the dis
tance between the drops, it appears safe to assume that the effect will be 
significant only when the drops are close together, and that the charge re
quired to affect the collision efficiency will therefore be considerably 
larger than that affecting it when both of the drops are charged. From this 
consideration we anticipate, for example, that 30 ~ radius collector drops 
falling through Ii cloud of uncharged 10 ~ droplets would have to bear 
charges of at least 10-~ esu in order that Es should be affected. 

For estimation of Q1 the experiments of Jayaratne and Mason (1964) are 
the most informative. They studied the coalescence of drops impinging on a 
plane or wavy water surface. The smallest drop for which they evaluated the 
critical charge required to cause coalescence was 139 ~ in radius; for this 
size the critical charge was about 6.10- 5 esu. Except for large impact ve
locities the critical charge increased with radius. The relation between 
coalescence of a charged drop with an uncharged water surface (corresponding 
to an uncharged much larger drop) and our case of a charged drop coalescing 
with an uncharged smaller droplet is not clear, but it seems safe to expect 
that Q1 would have the same general order of magnitude. From this discussion 
we see that there is a possibility, but not a certainty, that the required 
condition, that Q1 < Q2' is satisfied. 

We shall not discuss in detail in this paper the various experimental 
difficulties that were encountered in attempting to evaluate the collection 
efficiency of small collector drops (A :s: 40 ~) in the cloud tunnel. They in
clude the fact that characteristics of the cloud, such as liquid content and 
droplet size. may change as the a:f.r speed in the tunnel is increased to keep 
the growing drop stationary. The liquid content was measured continuously, 
but not the cloud drop size spectrum. Similarly, the charge on the collector 
drop was known when it was generated, but it might have changed due to col
lection of ions :Ln the air stream or charges on the collected droplets, al
though the charges on the droplets were measured to be less than 10-7 esu. so 
that the small number of them that: were collected in anyone experiment would 
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not affect the charge on the collector drop significantly. 
sis tent decrease in the rate of collector drop growth with 
experiments. One possible explanation of this decrease is 
the collector drop was being neutralized. Another is that 
droplets became smaller as the air speed increased. 

There was a con
time for all the 
that the charge on 
the size of the 

When E is large and the cloud sufficiently dense the equation for con
tinuous growth can be used to evaluate it. Solved for E this equation is 

4 P A2 
(5) 

E - ------------------
i (A + a)2 (V - v) 6t 

where p is the density of the liquid (one for water). i the mass of liquid 
per unit volume of the cloud. V and v the fall velocities of the drop and 
droplet, and 6A is the change in collector drop size in At seconds. The 
slope 6A/At may be determined from an analytic expression fitted to the curve 
representing the variation of observed drop size with time. or an average 
value can be computed from the difference in radius at the beginning and end 
of a time interval At. 

When the collection efficiency is so small that even with a dense cloud 
only a few droplets are collected during the experiment the continuous growth 
equation cannot be used. If n is the number of droplets collected and N is 
the number of droplets per unit volume of the cloud (N - 3i/4 ~8! p). the 
collection efficiency is approximately 

E ; n/N (V - v) ~ (A + a)2 6t • (6) 

The value of n can in some cases be determined by counting the steps in the 
record of the tunnel speed as it is changed when the drop grows by collection. 
If the steps are not sufficiently distinct and n is sufficiently large to per
mit assuming that the average volume of the collected droplets is representa
tive of the entire cloud. n can be computed from the change in volume of the 
collector drop: 

n- (A3 _ A3)/a3 • 6A3/a3 
f i 

where Ai' Af are the radii of the collector drop at the beginning and end of 
the time interval 6t. Equation (6) becomes 

E ; 4 p 6A3/3 1 (A + a)2 (V - v) 6t • (7) 

This equation is equivalent to equation (5) if the droplets are collected so 
frequently that At can be treated as an infinitesmal. 

When equation (6) is used with small n. there is uncertainty in the val
ue of E because of the variability of intervals between successive collection 
of droplets. If € is the probable error in 6t. it can be shown that the prob
able error in E is approximately € E/6t. 

In Figure 3A the results of one series of experiments. with A in the 
range 20 ~ to 23 ~ and a about 10~. For A this small the collection 

< •• 
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efficiency with zel:O charge is zero. The x on the ordinate axis shows the 
value of E (the computed value of E). It is seen that the experiment ap-

c s pears to corroborate the hypothesis: E increases with charge 
Q. reaching the value of E at Q - 0.7·10-~ esu. andx then remains constant 
until Q exceeds 1.2·10-~ e~u. Then it increases and becomes larger than the 
geometric collection efficiency when Q exceeds 2'10-~ esu. This suggests 
that for Q smaller than Q1 • 0.7·10-~ esu the coalescence efficiency Et is 
less than one. that it reaches unity when Q attains that v~u!:~ but that the 
charge does not affect Es until Q is greater than Q2 • 1.2 10 esu. 

If all the ~tperimenta1 data conformed to this pattern we would con
sider the hypothesis demonstrated. However. when all the data we have col
lected are consider.ed the evidence :l.s far from conclusive. Thus. in Figure 
3B the results of all our experiments with drops in that range are shown. 
The same general trend is seen. with E smaller than E for small charge and 
increasing with Q. but for some for s~e of the seriesc E is reached and ex
ceeded' for much smaller values of Q than in Figure 3A. c We are not aware 
of differences in the experimental parameters that would produce the differ
ences in the results. 

Figure 3C shows results for A in the range 26 ~ to 29 ~ with a ; 10 
~. The data suggests that Q

l 
is 1.3·10-~ esu and Q2 is 2'10 ~ esu. However 

there is some scatter in the resul.ts. In Figure 3D the data for A in 
the range 32-35 ~. a ; 10 ~ are shown. It appears that for this size Ql and Q2 are both greater than 2.5·10-~ esu. 

Figure 4 shotis'data for three ranges of A with a • l5~. The behavior 
of the positive charge cases (solid symbols) was sufficiently different from 
the negative for separate lines to be drawn for them. The increase of E 
with increasing charge is more rapid for the smaller values of A. as exp~cted. 
but the leveling off. insofar as it is apparent in the data. does not occur 
at the values of E corresponding to the computed collision efficiencies. By 
comparing Figure 4 with Figure 3 we see that for the same charge and range of 
A. Ex is considerably larger for a ;, 15 ~ than for a • 10 ~. 

The data displayed here is suggestive rather than conclusive. It is 
clear that E increases with Q and that for a specified charge the effect is 
larger the x smaller the value of A. There are indications in some of the 
data of the plateau that would occur if Q1 < Q2' In some instances the pla-
teau or a leveling off occurs at another value of E • 

x 

Charge could affect E! in two ways. firstly by reducing the time of 
thinning of the air film as the drops approach each other. and secondly by 
changing the thickness at which surface rupture and coalescence takes place. 
The details of these effects cannot be studied by cloud tunnel experiments. 
but by careful control of the various parameters it may be possible to dis
tinguish between the factors that affect the thinning and those that influ
ence the surface rupture. 

IMPLICATIONS OF COLLECTION EFFICIENCY ON THE PRECIPITATION PROCESS 

While the information concern:i.ng the effect of charge on coUecUon ef
ficiency is of intrinsic interest in shedding light on the collision and co
alescence processes. the data so far does not appear to clear up the initiation 

.': , 
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of warm rain. We have seen that the charge required for influencing E is of 
the order of 10-5 or 10-~ esu, but the available data (e.g. Webb and Gunn, 
1955; Takahashi, 1972) indicate that natural cloud drops bear much smaller 
charges. 

There have been a number of studies to determine the circumstances un
der which condensation can produce sufficiently large drops to start the 
collection process. The collision efficiency computations suggest that there 
must be drops at least 20 ~ in radius for it to begin, and the cloud tunnel 
experiments indicate that the minimum size may be as much as 30 ~ or even 
40 ~ unless the drops carry unusually high electric charges. Among the ways 
that have been shown to result in the growth of lar.ge drops by condensation 
are (1) the presence of abnormally large soluble nuclei - giant salt praticles 
5 ~ or more in equivalent radius -; (2) presence of unusually few CCN, so 
that the water vapor is shared by relatively few drops; this is sometimes true 
of maritime air in contrast to continental air; and (3) occurrence of entrain
ment or a succession of penetrative thermals in which competition between con
densed drops and newly activated CCN brought in from the environment leads to 
a wide drop size spectrum. 

To see how sensitively cloud drop growth by collection depends on the 
drop size dispersion, Chin and Neiburger (1972) carried out some computations 
of the evolution of drop spectra with differing characteristics. The govern
ing equation is 

M 

a~ ?n _ t J n (m) n (M-m) K (m.M-m) dm 

o 00 

- n(M) J n(m) K (m.M) dm 

(8) 

o 
In this equation the first integral on the right side represents the increase 
in number density n(M) of drops of mass M due to collection of drops of mass 
m by drops of mass M-m. and the second integral is the decrease in n(M) due 
to collection of other drops by drops of mass M. K (m.M). the collection 
kernel. is given by 

K (m,M) • ~ (A+a)2 E (V-v) 

For the collection efficiency they used the S-N computed values of Es ' 
and for the droplet spectra they used both Gaussian distributions and 
Khrigian-Mazin (K-M) distributions. the latter given by 

n (a) • (1.45 ~ a2/a6) exp (- 3 a/a) 

where a is average radius. Khrigian and Mazin found that this expression fits 
the observed distributions in a variety of types of clouds. 

Chin and Neiburger's computations showed that for distributions having 
the liquid content. mean volume radius. and relative dispersion the K-M spec
tra.because of their skewness. led to more rapid development of larg~ drops 
by the collection process. In the K-M expression the average radius a deter
mines both the modal radius and the dispersion. In Figure 5A the K-M 
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distributions for' three values of a, 4.5 lJDI, 6.0 lJm. and 7.5 lJm, with R. • 
1 gm m -3. are shown. While the modal radius changes only slight w:l.th in
crease in a, the number of drops with radii larger than 20 lJDI increases mar
kedly. 

The result:l.ng difference in the effect on collection is shown in Fig
ures 5B, 5C. and 5D. In these diagrams the specific liquid content q, ex
pressed in grams per cubic meter per unit of 10g2 a is graphed against log a, 
in order to show the transfer of liquid content from small to large drops. 
It is seen that for the case of a - 4.5 lJm. in which there are very few drops 
with radius larger than 20 lJDI, there is negligible change in liquid water 
distribution. but for a • 7.5 um the water accumulates on larger and larger 
drops, so that by 2000 seconds there is a larger mass of water in drops larg
er than 100 lJDI radius than in the more numerous smaller cloud drops. The 
effect of the drops initially larger than 20 lJm is clearly demonstrated. 

There have been a number of attempts to incorporate the microphysical 
processes of condensation and collection together with the larger scale dy
namical processes into a complete model of the development of precipitation. 
As an example of these attempts we shall cite the investigation by Ogura and 
Takahashi (1973) of the development of warm rain in a convective cloud. They 
computed the development of convection in a conditionally unstable atmosphere 
using a "one and one-half dimensional" time-dependent model, and evaluated 
the distribution of drop sizes as a result of condensation, coalescence. sed
imentation and drop breakup. As an :Lndication of the result Figure 6 shows 
the size density as a function of height 40 minutes after the inception of 
convection. The water content has already developed a second peak density 
for drops about one millimeter in radius, and precipitation is reaching the 
ground. 

CONCLUSION 

The physics of drops remains a central problem in meteorology. While 
the theory of condensation on nuclei appears to be fairly well in hand, the 
circumstances when it leads to drops large enough to engage in the collec
tion process are not well known. The values of collision efficiency appear 
to be satisfactory, but the coalescence efficiency is almost unknown. In 
particular, the influence of charges and fields on them. especially the very 
small charges and fields that occur naturally in the early stages of develop
ment of cloud and precipitation. need investigation. 
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Table 1 

Comparison of Experimental Collection Efficiency (Ex) and 
Computed Collision Efficiency (Ec) for Collector Drops of 

Ra~ius A with Approximately Zero Charge 

p .18 .20 .22 .24 .42 .46 .50 .64 

A (\1m) Ex Ec Ex Ec Ex Ec Ex Ec Ex Ec Ex Ec Ex Ec Ex Ec 

15-24 .21 .14 .18 .15 .05 .15 

25-34 .01 .46 

45-54 .26 .48 .12 .58 

55-64 .23 .65 

65-74 .07 .75 .07 .78 

85-94 .23 .81 .10 .83 .11 .85 

95-104 .11 .85 

105-114 .23 .81 .13 .86 
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Table 1 

Comparison of Experimental Collection Efficiency (Ex) and 
Computed Collision Efficiency (Ec) for Collector Drops of 

Radius A with Approximately Zero Charge 

.20 .22 .24 .42 .46 .SO 

Ec Ex Ec Ex Ec Ex Ec Ex Ec Ex Ec Ex Ec 

.21 .14 .18 .1S 
.01 .46 

.26 .48 .12 .S8 
.23 .65 

.07 .75 .07 .78 

.23 .81 .10 .83 .11 .85 
.11 .85 
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WATER DROP INTERACTIONS 

C. :e R. Saunders 
University of Manchester 

Institute of Science and Technology, Manchester 
England 

Research in this department has centered on the role of the 
water drop in atmospheric physics. The principal interest has 
been in determining whether drops, either singly or by interacting 
with others, can modify the physical conditions inside natural 
clouds. By the practical modelling of water drop interactions in 
the laboratory in a variety of experiments, it has been shown that 
1) partial coalescence is followed by satellite drop production 
which modifies the cloud drop-size distribution and can accelerate 
rainfall; 2) the freezing of supercooled drops may be accompanied 
by ice splinter production; 3) the vibrational frequencies of 
supported and freely suspended drops are modified by the presence 
of electric charge and electric fields; 4) interacting drops can 
separate charge in the weak electric field of the atmosphere in 
such a manner as to increase the electric field but more usually 
to decrease it; 5) when the ambient electric field has reached 
values far below that needed for breakdown of the air, two 
interacting drops can promote breakdown, which in natural clouds 
will initiate lightning. 

The paper will deal with aspects of these phenomena of 
relevance to the Conference and in particular will present the 
latest results on the interaction behaviour of two water drops 
in an electric field. 

Water drop interactions play an important role inside natural 
clouds; the cGalescence of drops modifies the size distribution 
and is responsib1e for the growth of individua1 drops to precip
itation drop size such that they will fall from the cloud as 
rain. Drop interactions within the ambient electric field of 
the lower atmosphere, when they result in separation, are able 
to separate electric charges between the two interacting particles 
which due to a size difference may fall at different speeds thus 
separating electric charge over a large volume of the cloud. 

DROP COALESCENCE AND SATELLITE DROP PRODUCTION 

Research in this laboratory has been closely involved with 
these processes and both experimental and theoretical studies 
have been made. Utilising the apparatus shown in Fig.1, Brazier
Smith, Jennings and Latham 1 were able to produce tWG controllable 
streams of water drops of radii R and r between 150 and 750um 
with R/r in tfe range 1.0 to 2.5, relative velocity U from "0.3 
to 3~0 m.sec- and impact parameter X, the perpendicular distance 
between the centre of one drop and the undeflected trajectory of 
the other from X = 0 to (It+r), the maximum value for contact. 
Water flow from the reservoir was modulated by two oscillating 
pumps before it passed through fine hypodermic needles. The flow 
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rate, frequency of modulation and size of needle controlled the 
size of the drops. Several types of interaction were noted:-
1) bouncing contact, with the air film preventing contact, 
2) permanent coalescence and 3) temporary coalescence with and 
without satellite drop production. These categories are shown 
in Fig.2. Fig.3 indicates the collision parameters where ¢ is 
the angle between the streams 9f drops and VR and VI' are the 
drop velocities, then: U2 = VRL + VrZ - 2VRVrCOS¢. ¢ was 
measured photographically and the velocities could be determined 
from the modulator frequency. A critical value of X was found, 
Xc' above which separation of the drops occurred and below which 
the coalescence was permanent; thus a coalescence efficiency was 
defined: Xc 2 

e:: (ir+'r) . 
e was zero when bouncing occurred for low velocity collisions with 
X nearly equal to (rl+r). At higher velocities, the other collision 
categories occurred and at large values of X, the angular momentum 
was sufficient to cause separation of the temporarily united drops 
and the long filament which was pulled out as they separated broke 
into small satellHe droplets. Only at values of X close to Xc 
was separation not accompanied by satellite production, and because 
this was such a limited range of all the possible values of X which 
did produce satellites, it was assumed that such production is 
common in nature. 

The criterion for separation was simply that it occurs if the 
rotational energy exceeds the additional surface energy required 
to reform the two drops from the coalesced drop-pair of radius Ro 
rotating with angular momentum J about its centre of gravity. 

J = (4npUXr3R3)/[(3)(R3 +r3)] 
where p is the drop density. The rotational kinetic energy, 
J2/21, is given by R.E. = 5npU2x2R6r6/(3Ro11) where I is the 
moment of inertia e)f a sphere rotating about an axis through its 
centre (I = 8nR0

50/15). The additional surface energy S.E. needed 
to reform two drops of surface tension a is 

4nr2a(1+v2 - [1+y3]t) where y = R/r. 
When X = Xc at the boundary between coalescence and separation, 
S.E. = R.E., and 

e = 2.4af(R/r)/(rpU2) (1) 
where f(R/r) = [(1+y2 - (1+y3)t)(1+y3)'i]/[y6(1+v)2] which varies 
from 1.3 for R/r = 1 to 3.8 for R/r = 3. U2rp/a is a dimensionless 
parameter characterizing the interaction process. 

Fig.4shows the measured variations of a(= et ) and e for 
values of rand U2rp/a respectively for equal sized drops. The 
theoretical curves were obtained from the above equation. S de
crea~es as U and r increase and e decreases from 1 towards zero 
as U rp/a increases from 3 to inf:lnity. Fig.5 is for unequal 
drop sizes. In all cases excellent agreement was noted between 
the experimental data and theory. The results showed that € lies 
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between 0.1 and 0.4 for equal sized drops and between 0.2 and 
0.6 for drops with R/r = 2.0. At larger values of R/r less 
angular momentum was available to pull the two drops apart. 

Fig.6 shows the effect of small equal and opposite electric 
charges on the drops, of magnitude similar to that found in 
natural clouds. At the lower velocity the drops had longer to 
interact and hence £ reached a higher value than at the higher 
velocity. The charges were sufficient to modify the trajectories 
of the drops only slightly causing £ to reach a maximum value for 
charges of ±3pC. 

Brazier-Smith, Jennings and Latham2 made use of the above 
data in a stochastic computation of the development of rainfall 
taking into account the production of satellites in an attempt 
to explain the rapid increase in drop size as revealed by radar 
which occurs in thunderclouds. The above theory predicts that 
drops of radii between 30~m and 500~m colliding at their term
inal velocity withUuger drops of radius greater by a factor of 
between 1.5 and 3.0 will provide the largest contribution to the 
rate of production of satellites which are typically of 80~m 
radius, a typical event producing about 3 satellites. A stoch
astic growth equation was generated which permitted calculations 
to be made of the evolution of a distribution of drops within a 
homogeneous cloud. The breakup of drops larger than 3mm radius 
was included in the computation but was found to be less impor
tant than satellites in the production of rainfall. In order 
to compute rainfall rates account was taken of the continuous 
collection of non-precipitating cloud water by the drops. 3The 
cloud water was released by condensation at a rate J mg.m- s-1 
The initial drop spectrum A consisted of 2,500 drops per cubic 
metre in the radius range 30 to 100~m with a water content of 
3 mg.m-3. Four types of interaction were considered: Case 1, 
Coalescence efficiency £ given by equ. 1, satellites produced; 
Case 2, £ given by equ. 1, no satellites produced; Case 3, 
£=1, no satellites; Case 4, £=0, with satellites. It was found 
that the time taken for the precipitation intensity to reach 
10mm.hr-1 occurred at about 850sec for all cases; thereafter 
they diverged so that at an intensity of 50mm.hr-1 the ti~e 
interval between cases 3 and 4 (the fastest and slowest respec
tively) was only 1 minute. Cases 1 and 2 were identical showing 
that the influence of satellite drops and the particular value 
of £ chosen are not important to the rainfall rate. By increasing 
J, the precipitation intensity increased rapidly showing that 
micro-physical processes involving raindrops are much less impor
tant than the rate of release of cloud water. Fig.7 shows the 
raindrop size-distribution after 20min in which it is seen that 
the rate of production of large drops is sensitive to the value of 
£. Case 3, for £=1, has developed the largest drops, and in 
Case 1, the satellite drops lead to a bimodal distribution with a 
peak around 100um. This most realistic case is shown in more 
detail in Fig.8. The unrealistic depletion of smaller drop sizes 
is due to the cut-off of the initial size distribution at 3Qum 
and the non-replenishment

6
by coalescence of cloud droplets. The 

radar reflectivity, rniri , was determined and increased by an· 
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order of magnitude every 2tmin. Because of the r6 dependence, 
the satellites produced a negligible contribution. Thus the 
overall conclusions of this work were that the contribution of 
satellite drops to the rainfall rate is insignificant. 

In a development of this work Brazier-Smith, Jennings and 
Latham3 computed the effects of evaporation and drop-interactions 
on a rainshaft. They concluded that the coalescence of raindrops 
acts to preserve within the rainshaft a considerable amount of 
liquid water that would otherwise have been lost by evaporation. 
Another conclusion was that the capture of small and satellite 
drops by larger raindrops is more efficient than evaporation in 
removing the smaller particles from the spectrum. 

INTERACTlNG WATER DROPS: CHARGE TRANSFER 

Sartor4 showed that high electric fields may be rapidly 
generated by the interacting particles which separate charge in 
such a manner as to continually enhance the existing field. This 
process is known as the indl1ctive process of thunderstorm electri
fication. Latham and Mason~ calculated that if two contacting. 
conducting spheres separate in an electric field, then the amount 
of charge, q, which is transferred is given by: 

q = 1.1 x 10-10Y1Er2cose where e is the angle between the 
electric field and the line of centers of the spheres at the moment 
of separation; Y1 is a function of r/R which decreases from "2/2 
when r/R = 0 to "2/6 when r/R = 1. In an experimental study of 
this effect the apparatus shown in Fig.1 was used, with the 
addition of a horizontal electric field and two induction cans 
connected to electrometers in order to catch and measure the 
charge on the drops after separation. The type of interaction 
used is shown in Fig.3(iv) in which the fine filament drawn out 
condenses to form satellite drops. Preliminary measurements of the 
charge transfer are shown in Fig.9 in which the theoretical line 
is calculated from the equation above. In the upper graph for 
equal drops there is an indication that the charge trangfer is 
larger than that predicted by theory. Censor and Levin have 
computed theoretically the charge transferred between two drops 
which have a long neck between them prior to separation. For 
example, for a filament of length 4R for equal drops the charge 
transfer is enhanced by 100% above that for the separation of 
undeformable drops. Without taking this enhancement into account 
Jennings and Latham7 showed that the charge transfer process is 
capable of separating 1 ooul.km-3min-1 of charge in an existing 
electric field of 30kV/m typical of an embryo thunderstorm having 
a typical precipitation water content of 4 gm.m3. Such a charge 
separation rate was shown by MasonS to be a requirement of a sat
isfactory thunderstorm electrification theory. However 9 this 
particular interaction studied here separates charge in a manner 
which reduces the electric field. Sartor envisaged a process 
whereby the drops do not swing around each other while in contact 
but separate before swinging round; such a process is more likely 
to occur in clouds below 00 0 when solid particles interact. Thus 
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it seems that in all-water clouds, interactions occur which dis
sipate the field, and if the enhanced charge transfer due to the 
filaments is taken into account, this dissipation will be even 
faster. It seems even more difficult now to explain "warm-cloud 
thunderstorms", containing no ice, which have been reported in 
the literature. Experiments on this important subject are being 
continued in UMIST. 

VIBRATIONAL FREQUENCIES OF DROPS 

This subject is of interest because of the possibility of 
deter~ining drop sizes within clouds by using a ground-based radar 
whose return signal is modulated by the vibrating drops. Rayleigh9 
determined the natural frequency of vibration of a drop carrying 
electric charge: 

f = fo( 1 02 ) t 
- 64TT2R3Te o 

where Q is the charge on the drop, T is the surface tension and 
fo is the charge-free frequency given by (2T/TT2R3p)t. Experiments 
were conducted by Saunders and Wong10 using a vertical wind tunnel 
to freely suspend the drops and a high-speed camera to record the 
drop vibrations from which their frequency could be determined. 
The results were is excellent agreement with theory and showed 
that for a typical 2mm radius drop carrying 3 x 10-1 Uc the measured 
drop-size would suffer an error of 0.6%. Of more importance is 
the effect of the electric field; a field of 6 x 105V'm-1 in this 
case leads to an error of 8.5%. Brazier-Smith, Brook, Latham, 
Saunders and Smith11 investigated the behaviour of vibrating drops 
in an electric field and developed a theory to relate the vibra
tional frequency to the electric field. Experimental measurements 
agreed well with this theory. Thus if the vibration of raindrops 
is to be used to determine drop-size distributions in highly 
electrified clouds, the field strength will have to be measured 
independently. 

LIGHTNING TRIGGERING BY INTERACTING WATER DROPS 

The most favoured explanation for the initiation of lightning 
has been that positive corona is given off from the surface of a 
highly distorted raindrop in a high electric field. Unfortunately 
the electric field required for this to occur is over 550kV/~, 
whereas the maximum field measured in a thunderstorm is 400kV/m. 
A field of 400kV/m is able to extend the length of positive 
streamers which suggests that this value of field is required fOf 
lightning initiation. A recent study at UMIST, Crabb and Latham 2, 
has ,been made to discover whether a pair of raindrops within a 
thundercloud may be grossly distorted and produce corona at a 
lower onset field than a single drop. Fig.10 shows the apparatus 
in which a large drop of radius 2.1mm could be dropped while a 
smaller drop of radius 0.65mm could be ejected upwards so that 
the two collided within a vertical electric field with a realistic 
relative velocity of 5.8m.sec-1• A storage oscilloscope was con
nected to the lower plate which was grounded and thus positive 
corona discharge given off from the underside of the drops could 
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be detected. Fig.11 shows several of the interactions: 'd' 
shows a central collision with the larger drop in the 'bag mode'; 
in 'e' the smaller drop has broken through the bag. The most 
glancing collisions (b,c,f) resulted in the formation of liquid 
filaments sometimes 20mm long which broke up into droplets. 70% 
of all interactions resulted in the emission of corona with a 
minimum field of 250kV/m producing corona when the filament 
length was a maximum. Corona occurred for central collisions in 
fields of around 508kV/m. Continuous corona was not observed, 
usually around 10-1 C of charge was released which is insufficient 
when all drop interactions are taken into account, to reduce the 
conductivity of the cloud and hence inhibit field growth. However, 
by assuming that corona is initiated in fields below 350kV/m if 
the two drop radii are greater than 1.8mm and 0.65mm, then in a 
cloud of precipitation water content 19m/m3 the rate of corona 
events is 2 x 10-2m-3s-1, which is 1 per minute per cubic metre 
which is adequate to explain lightning initiation. 

ICE PARTICLE MULTIPLICATION 

One of the most puzzling problems in atmospheric physics at 
present is the discrepancy between the concentration of ice part
icles in clouds whose lowest temperature is above -120C, compared 
with the concentration of ice forming nuclei. For example, 
Hobbs 13 found that the ratio of ice crystal concentration to ice 
nucleus concentration decreased sharply with decreasing temper
ature from about 104 at -50C to unity at -25 0 C. In such clouds 
there are always observed rimed ice pellets of a few millimetres 
diameter together with large supercooled drops of radius greater 
than 250um. The most likely mechanism of ice particle multipli
cation is one in which supercooled drops shatter on freezing, 
either in isolation or when they impact onto an ice pellet and 
form rime. Hallett and Mossop14 have found that several hundred 
ice splinters were ejected for every milligramme of accreted rime, 
a result which is 3 orders of magnitude greater than other workers 
and has not yet been independently verified, but which is suffic
iently large to explain the discrepancy. An investigation of the 
isolated drop freezing process has been proceeding in Manchester. 
Gay15 has constructed a chamber, Fig.12, in which supercooled 
water droplets can be freely suspended in atmospheric conditions 
While their freezing behaviour is noted. The charged drop is 
introduced into an electrodynamic field by Blanchard's bubble 
bursting technique 16 • The drop is supported by a vertical d.c. 
field and constrained by analternating potential applied to a 
metal ring surrounding t~e drop. Holes in this ring permit 
observation of the drop whose vertical position can be controlled 
by varying the d.c. field. The whole electrode system is sur
rounded by a low temperature chamber and an attempt was made to 
maintain the environment in a supersaturated state so that if an 
ice splinter were to be ejected upon freezing, it would grow and 
could be detected. It proved impossible, however, to achieve 
supersaturation du.e to the deposition of the vapour upon the 
electrode. With this limitation p the freezing of supercooled drops 
was studied. Below -15 0 C the drops often froze spontaneously; 
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above this temperature nucleation was induced by introducing 
silver iodide. The charge-to-mass Tatio of the drop was deter
mined before and after freezing; freezing resulted in the drop 
being displaced and it could be restored to the original position 
by adjusting the d.c. potential. The drop size was measured, and 
the initial charge on the drop was known. Table 1 shows the fre
quency of occurrence of the various freezing modes. In 70% of 
the cases freezing occurred rapidly with an increase in charge 
to mass ratio of 5 - 10%; no visible matter was ejected and the 
drop remained spherical. In 18% of the cases surface irregular
ities occurred but again no visible splinters were ejected. For 
3% of the cases, frost-like growths on the frozen drop were seen 
to detach themselves from it and were swept up in the electric 
field. In 10% of the cases the frozen drop exhibited subsequent 
changes in its charge to mass ratio. 27~ of freezing drops which 
were allowed to evaporate to the Rayleigh limit froze on disrup
tion, the charge to mass ratiO decreased but no splinters were 
observed. Calculations of the mass loss showed that it exceeded 
the theoretical evaporative mass loss on freezing and was there
fore due to the ejection of either liquid or solid material. 
The general conclusion of this work is that drops in the radius 
range 25-1001.lm produce, typically, 40 splinters when they freeze 
with maximum production at -SOC, but the conclusions are based 
on secondary evidence only, it being impossible to capture a 
splinter. Such a number of splinters is adequate to explain the 
ice multiplication in clouds as shown by the stochastic treatment 
of Chisnell and Latham17. This multiplication process is of such 
importance that more effort needs to be expended in order to de
velop a method of permitting a droplet to freeze in a supersatur
ated environment so that the splinters produced will grow and 
may be captured. 

CONCLUSION 

Work in UKIST is directed towards solving some of the out
standing problems in atffiospheric physics and in particular the 
role that water drops and water drop interactions play in the 
physical and electrical growth and development of clouds. To 
this end work is continuing into the coalescence of drops, both 
experimental and theoretical in order to build up a realistic 
picture of the development of a cloud particle spectrum through 
the life-time of a cloud. Laboratory simulations of charged 
water drop interactions in electriC fieltis are continUing in 
order for us to be able to understanC1 "warm-cloud" elect.rific
ation. The study of the triggering of lightning is to be ex
tended to a large scale laboratory cloud to learn whether the 
individual interactions which lead to corona discharge will 
occur in a more realistic environment with many more than just 
two particles present. It is hoped to aevise a means of freely 
supporting a supercooled drop in a supersaturated environment 
in order that any fragments which may be emitted upon freezing 
can be captured and identified in order to resolve the most 
important. ice multiplication problem. 



494 

REFERENCES 

P R Brazier-Smith, S G Jennings and J Latham, "The interaction 
of falling water drops: coalescence" Proc.Roy.Soc.Lonct..A.E§., 
393-408 (1972) 

2 P R Brazier-Smith, S G Jennings and J Latham, "Raindrop inter
actions and rainfall rates within clouds" Quart.J .Roy.lvlet.Soc., 
~,260-72 (1973) 

3 P R Brazier-Smith, S G Jennings and J Latham, "The influence 
of evaporation and drop-interactions on a rainshaft", Quart. J. 
Roy .iViet . Soc.? ~, 704-22 (1973) 

4 J D Sartor "The role of particle interactions in the dlstribution 
of electricity in thunderstorms" J.Atmosc.Sci., 24, 601-15 (1967) 

5 J Latham and B J Ivlason "Electric charging of hail pellets in a 
polarizing electric field" Proc.Roy.SoC.A.~, 387-401 (1962) 

6 D Censor and Z Levin "Electrostatic interaction of axisymmetric 
liquid and solid aerosols" Univ. Tel-Aviv,ES73-015 (1973) 

7 S G Jennings and J Latham"The charging of water drops falling 
and colliding in an electric field" Arch.i'iet .Geoph.Biokl.Ser.A, 
gJ.,299-306 (1972) 

8 B J i'iason "Critical examination of theories of charge generation 
in thunderstorms" Tellus,~, 446-60 (1953) 

9 Lord Rayleigh "On the equilibrium of liquid conducting masses 
charged with electricity" Phil.lVla.g. ,li, 11::l4-6 (1882) 

10 CPR Saunders and B S Wong "Vibrational frequencies of freely 
fallingchargeci water drops" J.Atmos.Terr.Phys.,l§.,707-11 (1974) 

11 P R Brazier-Smith, II! Brook, J Latham, C P [{ Saunders and 1'1 Smith 
"The vibration of electrified water drops" Proc.Roy.Soc.Lond.A, 
~, 523-34 (1971) 

12 J A Crabb and .r Latham "Corona from colliding drops as a possible 
mechanism for the triggering of lightning" Quart. J .Roy, "let . 30c. 
100. 191-202 (1974) 

13 P V Hobbs "Ice multiplication in clouds" J.Atmos.Sci.,g§,,315-8 
(1969) 

14 J Hallett and S C l'lOSSOP "PrOduction of secondary ice particles 
during the riming process" Nature Lond, lli, 26-8 (1974) 

15 l'l J Gay, Ph.D. Thesis, Ui,rIST (1974) 
16 iJ C Blanchard "A simple method for the production of homogeneous 

water drops down to 1um radius" J.Coll.Sci.~,321-d (1954) 
17 R F Chisnell and J Latham "A stochastic model of ice particle 

multiplication by drop splintering" QUart.J .Roy .il1et .Soc .,lQQ, 
296-308 (1974) 



495 

Figure 

micromanipulator 

BtMhoSCOpei : c;}_ra 
-'I'-.+..J " ~'n eel"," """,""Ir 

AJJ,Nlonlo"uK fur Mt'Hlyill~ "HI illt .. ·n .. ~.·i."1 nr ';"Iill": tin ....... 

Q ~ 0 
0 0 Q 

0 C- O 0 
0 

0 Q", 
0 

0 
0 0 0 

0 0 

0'0 
0 CO 00 6,.i) 

C 
OCi ~ 0=4 

~ 
C 0 ",0 
\) 

() tJo C 
0 

~ t7 

(0 (') o (m 0 
~~ !? 0 

(iii) (iv) 

Dru" ('ulliMiulI ('at")!"flI"it·,,, (i I pt·rllll\lI .. lIt ('OI\It'R('('II('f': (iiI boulI('illjr: (iii I ... ·pl\mtioli 
withuut ""t .. llit .. ,,: (i'"1 Rt'pl\rl\tiuli with AAt(,)litl'A" 

Figure 2 



496 

G 

(i) 

Diftg .... m dofiuing collision pftl'llmeters. Interaction viewed from the framl.' of 
rrfcrencl.' of (i) the laboratory, (ii) one of t loe drops. 

Figure 3 



'" ..... 

p 

497 

• 

----..---• • • 
(1,'_)L.-'----...".,~---...L..---...,.e.,....---....... -----1 

I 250 -t50 650 

rIp-in 

ThE' ,'uri"t inll of liu('I\I' ('oal,',wI'IlC(, I'fficil'llcy. fl. wit h dl'op ro.c:lilljo; 1', U, = J ,5 III ",-'. 
R = 1', e, EXPPI'illll'lItU,J poillts: ---. thf'OI'l'tic'nl (,111'\'(, . 

• • 

'1'1 .. , ,"a"intiull "f ('"nit''''''''''''' I'flil!i"III'~'. t.. with IIII' tlillu'"sio"I,''''''' pH 1'1111 u't "I' 
,.arl, '" rill' iel"111 i"I,II)" >lil .... tl ,h'"pjo;, •• Exp"I'illll'lItlll poi"tjo; fl'OIll PI,,'''''''t I'XPI'I'illlt'''ls: 
::,\, t'xp"I'iIllPII! III puill!jo; fl'llill AeI"llI ", ,,1. (196Hl: ---, '''«'!lI'd i"111 l-II"\'", 

Figure 4 



fl. 

004 

0 ') .-

°'---=11::-0 

498 

20 
U2rp/rr 

30 

The Yal'iation of coal(,SCp.llCf' efficiency, e, with th(' dimensionless plu'amct<'t· 
("2I'P/fT fOl' lUlf'qually sizf'd dr'ops. R/r = 1.75, •. Exp<'rim('nt.al points; . t)1('OI'('t· 
ienl cm'w'. 

24 

~) 

II (',,! 

IH 

I~ 

• 

• 
1.5 

RJr 

• 
• • 

T ... · ,'"ri"t ill" (Jf IIF r! with M&(lius ,·"t ill If Ir . •• 1<:XIH"'illll'iltlLl poillt s; 
---. , ..... , .... tic·,,1 (·ur'·.·. 

Figure 5 



499 

r • • • 1 

0.4 

1 
)r' • .2 t • • 

fl2 

O'~~~--------~6----------1~'~------~1m-

Q/pC 

The variation of coalescence. efficiency, e, "ith drop charge Q fol' equally sizt'd 
drops of radius 500 I'm. ., Experimental points; ---, expt'rinwntai curve. I, 
U = La m 8-1 ; 2, U = 2.0mB-I, 

Figure 6 

/' , 



500 

..... ::....,.~ 
•••••• -.-...3 

'. ---.. 
...•.•• ~.2 '",-

". -'-..... '\ 

'. , " ' ...... ", 
... \ 
'\ \ .. 

~o~------~--------~--------~ 
r(mlll) 

The CIIIcur.ted cIrop.aize diItributiona filter 20 min for C- (1) to (4). Spectrum A. J.".. 2" 
II1II m-s ,-I. 

Figu re 7 

The calculated drop-aize distributions at various times t. Spectrum A. Cue (1). J = 2·.~ 
mg m-J .-1. (1) t =, 0: (2) t = 300 8: (3) t =,600 8: (4) t = 900 8: (5) t = 1.200 s. 

Figure 8 



q(pC) 

18 

11 

6 

o 3 

501 

• 

• 

• 

6 

The relation between charge transfer q and Er2 for equally sized drops. H=O 
• experimental points; -- theoretical curve from Eq. (1) 
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The relation between charge transfer q and Er2 for unequally sized drops 
• experimental points; -- theoretical curve from Eq. (I) 
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Frequency of ocgurrence of various modes of freezine 

"lode of Number " increase in 61'0 0 
freezing of cirops charge-to-mass 

ratio 

"colDlllon" 377 5- 101' o - 29 

spikes a: 98 ... 1~ 5 - 25 bulges 

splinters 19 ... 101' ... 15 

secondary 53 - 1 - 15 IDIUIS loss 

Rayleigh 2· decrease 10 freezing 

drop 1 ... 5'- 8 splitting 

total 549 

• o~t of 100 drops in a separate study. 

Table 
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NUCLEATION THEORY AND ITS ATMOSPHERIC APPLICATIONS 

I. INTRODUCTION 

In recent years, the growth of interest in the study of nucleation 
theory for metastable systems has greatly increased. This increased 
interest is due in part to the fact that nucleation in supersaturated 
vapors or superheated liquids is one of the most important aspects of many 
fields, such as the atmospheric sciences, biology, chemistry, industrial 
engineering, and physics. A serious communication problem and a disconcerting 
lack of overall direction among research efforts always exist in a field 
involving multiple disciplines. One of the methods of speeding up scientific 
progress is to bring together information from various fields relating to 
one common problem. The International Colloquium of Drops and Bubbles 
certainly will provide an opportunity to exchange information from different 
disciplines on the science of liquid drons and bubbles in liquids. 

From the viewpoint Of kinetic theory, liquid drops in a gas phase or 
gas bubbles in a liquid phase can be considered one of the metastable 
states of gas-liquid phase transition. This phase transition is initiated 
by nucleation. In general, the metastable states can be described by three 
stages: (1) the development of a supersaturated state; (2) the generation 
of nuclei of the new phase; (3) the growth of these nuclei to form larger 
drops or larger bubbles. 

The supersaturated state can result from changes in physical parameters 
(pressure, temperature, tension, etc.) or by chemical-photochemical pro
duction of reactants which have low volatility. Nuclei of the new phase 
can be generated homogeneously by: (1) homogeneous homomolecular nucleation, 
which involves only one gaseous component; (2) homogeneous heteromolecu1ar 
nucleation, which involves two or more gaseous components, i.e., H2S04 and H20 molecules can combine to form a sulfuric acid drop. They can also 
be generated heterogeneously by the additional force fields associated 
with ions, impurities, surface or structural imperfections. Each of these 
heterogeneous nucleations can be, of course, either homomolecular or 
heteromolecu1ar. In this report, we concentrate our efforts on the studies 
of the nucleation phenomenon and its atmospheric applications. The growth 
processes are covered by other speakers in this colloquium and will not 
be discussed here. 

We briefly discuss the present status of the homogeneous nucleation 
theories and experiments from the vapor to the liquid phases in section II. 
Section III covers some selected nucleation phenomena and their roles in 
the atmosphere. Problems associated with nucleation theories such as 
"microscopic surface tension," "contact angle," etc. " are examined in 
detail in section IV. In the conclusion, we outline some future research 
problems in relation to the study of nucleation phenomena. 

II. HOMOGENEOUS NUCLEATION THEORIES AND EXPERIMENTS 

~bile homogeneous nucleation processes have little application to the 
real atmosphere, their study is nevertheless the basis of much other, more 
useful theoretical work. Here. we briefly discuss the present status of 
homogeneous nucleation theories and experiments. 

,~' .' 

/"- ", 
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Three theoretical approaches are most commonly used for study of 
homogeneous nucleation phenomena, namely, (1) the thermodynamic ~proach!'2 
(2) the statist:l.ca1 approach3,' 4,5 and (3) computer simulation ~! ,8, 9 Thermo ... 
dynamic theories assume the equil~Dri~ number of clusters (per cumic 
centimeter) C(n), containing n molecules to be proportional to exp(-~G /kT), 
where ~Gn and the value of the proportionality factor for C(n) are con~ro
versial, most thermodynamic theories result in the general form 

o 6.G • -nok~:·l.n(y) - n .kT.ln(x) + "kT.ln(n) + const n 
-1" ncr n 

C(n) • qO'II x Y 

Thus C(n) - pre"exponential factor'exp[-(bulk term + surface term)/kT]. 
In "classical" nucleation theorylO one has " .. 0 and q "C(l)"concentration 
of single moleculE!s. The y-term comes from the bulkoformation energy, 
the x-term from the surface free energy (the leading correction excess 

(la) 

(lb) 

free energy, x <1 for positive surface tensions), and the physical 
interpretation of the logarithmic and constant term in Eq. (la) are contro
versia13 :- 5 In general the bulk term 

y • exp(~-~ )/kT coex 
(2a) 

and for ideal gas laws 

y • P/P
coex 

(2b) 

where ~ and P are the chemical potential (per molecule) and the 
pressur~og¥ the v~~g~ on the coexistence curve where liquid and vapor are 
in eqailibrium; ~ and P are the values in the (supersatur~ted) vapor. 
The n term in Eq. (la) arises from the surface area (G:n , 0<0«1, for 
spherical cluster 0-2/3), and the surface tension: 

-nOkT.ln(x) •• (surface tension). (surface area) (3) 

which defines the dimensionless parameter x. It is widely accepted that 
the surface tension of a bulk liquid is not necessarily equal to the surface 
tension of a droplet containing, say, only 100 molecules. With the same 
surface area, a difference of surface tension, say.1S%, will result in a 
difference of nucleation rate on the order of 10.1 7, 

Most controversy centers on the logarithmic term and the constant 
contribution to the formation energy in Eq. (la). Different values of 
"and q are derived from the statistical approaches of various modeIJ-s. 
The sta~istical approaches have focused on the evaluation of the partition 
function for an "embryonic liquid" droplet and the reSUlting prediction for 
nucleation theory. The correction factors due to the rotational and 
translational degrees of freedom for the small droplets] give,,· -4 and 
q »C(l). Many other results for" and q have been proposed 4 , 5 and no 
ggneral agreement has been reachedl1. 0 

Previous experimental reports 12- l4 (see Table I) have indicated that 
nucleation rates measured for H20, CH30H, and C2HSOH are in good agreement 
with the predictions of the classical theory, wliereas NH3, C6H6, CHCL3, 
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and CCL3F are found to be in remarkably good agreement with the Lothe-Pound 
theory. 13 This non-uniformity of results has furthered the controversy 
with respect to the treatment of rotational and translational terms in the 
free energy of an embryo. These terms give rise to a factor of 101 7 in the 
prediction of nucleation rates. However, it should be noted that the 
comparison between experiment and results of the classical theory and of 
the comparison between experiment and results of the Lathe-Pound theory 
has been made using the measured bulk surface tnesion for the liquid droplet. 
As pointed out before, a 15% change in the surface tension of a small 
droplet would.affect the nucleation rate by a factor of 1017• Therefore, 
a closer examination of the calculation of the surface tension (or of the 
surface free energy term in the formation energy of an embryo) for small 
droplets is desirable. In section IV, we will examine the calculation of 
"microscopic" surface tension in detai;L. 

A computer simulation of small clusters should, in principle, give' an 
exact answer to all the controversial problems mentioned above. However, 
the usual microcrystalline approximations 6 ,7 have considered only the 
intermolecular binding energy and the vibrational free energy for a given 
configuration but neglected the anharmonic vibrational terms and the 
configurational entropy. :(For the same number n of molecules numerous 
different "equilibrium" configurations exist, particluarly for liquid 
droplets.) From molecular dynamics and MOnte Carlo simulations of argon 
clusters, ~ 8~1c~ take into account such necessary corrections, one 
observes that the droplet formation energy can differ by as much as 100 kT 
from the microcrystalline harmonic approximation, givin¥ a difference of 
a factor 10~ in the nucleation rate. Recently, Binder 5 has investigated 
the thermodynamic properties of metastable states and nucleation process 
in the lattice gas model by Monte Carlo method. Although this approach 
provides an insight into the properties of metastable states, the lattice 
gas model is unrealistic. 

In conclusion, the computer simulation approaches may provide accurate 
information on the thermodynamic properties of a small cluster and the 
prediction of the nucleation rate if one makes a.successful choice of 
a suitable model. But, computer simulations are material-dependent and 
they are complicated for realistic intermolecular potentials. Statisti
cal approaches are based on more fundamental principles of statistical 
mechanics. The controversies arise from the evaluation of the partition 
function which is model dependent. Further investigation of nucleation 
theory based on the statistical approach requires a well defined concept 
of "physical cluster." Thermodynamical approaches are semi-phenomenolo
gical, and thus avoid the complications of computer simulations and the 
controversial problems of statistical approaches. A good thermodynamic 
theory must be able to obtain accurate and correct parameters (such as 
surface tension) either from basic calculation or from experimental 
measurements to enable prediction of nucleation rate. 

~ansion cloud chamber 16 diffusion cloud chamber, 1 7 supersonic 
nozzle, 8 and molecular beaml9 techniques are the experimental tools most 
often used to check the critical supersaturation in various substances and 
the nucleation rate as a function of the supersaturation. An excellent 
critical review of various experimental measurements for different sub-

....... ,.,0", 
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stsnces of critical su~ersaturatiorl for nucleation of liquids from vapor 
was reported by Pound. 0 In this review, Pound gives brief descriptions 
of various experimental techniques and their limitations. Values of 
critical super saturations for homogeneous nucleation of droplets from the 
vapor are tabulated and plotted. In addition td observing the limitations 
of each experimental technique pointed out by Pound, one should also examine' 
the impurities in the substance. F'rom the study of ''binary,,2t.22 and 
"heteromo1ecu1ar,,23 nucleation theory it can be seen that the impurity 
factor will significantly change the values of critical supersaturation. 

The authors lmuld like to take this opportunity to inform the readers 
that a series of hooks on nucleation theory, experiment, and various 
applications edited by A. C. Zettlemoyer and Kiang2~ will be published 
in the near future. The present status of the nucleation theorY and 
experiment will be discussed in great detail in these books. 

III. ATMOSPHERIC APPLICATIONS 

Selected topics of nucleation phenomena (cluster formation involving 
ions will not be discussed here) and their roles in the atmosphere are 
discussed in this section. In order to describe the roles of different 
nucleation proceS!les in the atmospheric applications, we separate our 
discussions into lowo cases: relative humidity (RH) below 100% and RH 
above 100%. 

For RH <100%, the role of nucleation theory in the atmosphere is to 
describe the initial stage of the atmospheric aerosol formation mechanism. 
The mechanism of formation and growth of aerosols in the atmosphere can 
be schematically illustrated by the phase transition block diagraln (gas
to-particle convel~sion, gas-to-particle interaction, and particle-particle 
interaction) as shown in Fig 1. This diagram indicates all the reaction 
mechanisms (represented by arrows) that govern the transition of gaseous 
products (represented by boxes) into a solid or liquid phase. 

For RH > 100%, the role of nucleation theory in the atmosphere is to 
describe the cloud droplet and ice crystal formation mechanism. The 
mechanism of formation and growth of cloud droplets and ice crystals in 
the atmosphere can also be schematically illustrated by the phase transition 
block diagram II given in Fig 2. The application of nucleation to weather 
modification and the mechanism for multiplication process of ice will not 
be discussed here. 

Here we would like to discuss the most dominant nucleation processes 
for the aerosol formation (RH, <100%) and cloud droplet and ice crystal 
formation (RH > 100%). 

A. Relative huDrl.dity below 100% 

It is not possible to form water droplets homomolecularly under 
atmospheric conditions of RH <100. Relative humidity greater than 400% 
is required for the homogeneous homomo1ecu1ar formation of water droplets, 
and RH > 100% for the heterogeneous homomolecu1ar formation of water droplets 
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with impurities. 25 Therefore, for RH. <100%, other nucleation mechanisms 
are needed to form a new aerosol in the atmosphere. In a complicated 
system such as the atmosphere, several different gaseous molecules may come 
together to form an aerosol. For a completely dust-free atmosphere ( or 
near the "source" of those different gaseous molecules) homogeneous hetero
molecluar nucleation theory is required to study the initial stage of aerosol 
formation involving several gases. For an atmosphere containing conden
sation nuclei or dust particles ("surfaces") we have a situation in which 
heterogeneous heteromolecular nucleation theory applies. 26 This hetero
molecular nucleation may be the most dominant nucleation process of droplet 
formation for an atmosphere with RH. <100%, since the nucleation threshold 
(required supersaturation) for heteromolecular nucleation can be much 
lower than for nucleation with pure materials (homomolecular). Other 
processes for the aerosol formation such as chemisorption, adsorption, 
and surface heterogeneous catalysis will not be discussed here. 

The formation of aqueous sulfuric acid droplets is a typical example 
in which droplets can be formed in the atmosphere with RH far below 100% 
and activity (pIp H SO where P H SO is the vapor pressure over 

coex. 2 4' coex, 2 4 
the pure H2S04) far less than one for H2S04 , The concentrations of the 
trace gases in the earth's atmosphere are measured in parts per million 
or parts per billion. Heteromolecular nucleation requires gaseous constituents 
with very low volatility; however, most of the atmospheric trace gases 
have high vapor pressure and their concentrations are not sufficient to 
allow heteromolecular nucleation out of the gas phase. Then chemical 
reactions, combined with radiation or other energy input, are required 
to produce reactants with low vapor pressure which then mix with water 
vapors to form new aerosols (seeoFig 1). The trace gas S02 has very 
high vapor pressure (4 atm at 25 C). In the presence of water vapor and 
oxidants, H2S04 may mix with water vapor and undergo heteromolecular 
nucleation to form aqueous sulfuric acid aerosol. 

For binary systema, with this heteromolecular nucleation approach, 
we have studied the initial stage of aerosol formation for various poll
utants 23 ,26 (H2S04-H~O, HN03-H2~' etc.) and the cloud-base levels for 
Jupiter and Venus 2 (NH3-H20,1H2S04-H20, HeL-H20, etc.). 

In a ternary system, several distinct characteristics exist which a 
binary system does not present (for detailed discussion, see ref 28). 
Here we summarize those distinct characteristics as follows: (1)· the 
nucleation rate for a ternary system is dependent not only on the relative 
humidity but also on the composition of the other two components at a 
fixed relative himidity; (2) in a ternary system, the effect of temperature 
on the aerosol formation is more significant,29; and (3) chemical reaction 
is more likely to occur in a ternary system. No attempt has been made to 
calculate the nucleation rate for a ternary system since there is not now 
sufficient thermodynamic data available to carry out the theoretical study. 

Other problems associated with the study of heteromolecular nucleation 
theory will be discussed in the next section. The only experimental 
measurement for heteromolecular nucleation study was performed by Flood 
for ethyl alcohol-water mixtures;3 0 the experimental results agree with 

. , ....... 
", " . 
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theoretical prediction. 2 7 Other erYerimenta1 studies for H2S04 -H20 
and ethanol-water ~Lre in progress. 3 I 

B. Relative humidity greater than 100% 

There are three major phase transitions which can occur in the atmosphere 
with RH > 100%: the condensation of water vapor to droplets; the formations 
of ice crystals from water droplets; and the formation of ice crystals 
from water vapor, The development of the supersaturated state for nucleation 
largely depends on the change of physical parameters such as pressure, 
temperature, water concentration, etc., which is not like the situation for 
RH <100%, where the development of the supersaturated state is largely 
dependent on chemical (photochemical) reactions. 

Heterogeneous nucleation on soluble droplets is responsible for the 
condensation of water vapor to dropleto. In comparison with other nucleation 
processes in the atmosphere, heterogeneous nucleation on soluble droplets 
is the least controversial since most theories and experiments for this 
process are in good agreement. 25 There are two effects of vapor pressure 
that must be considered in any treatment of the growth of droplets on a 
soluble particle: (1) the solution effect; and (2) the Kelvin effect. 
As mentioned in the previous section, vapor pressure changes over a solution 
as contrasted to over a pure liquid (heteromolecular effect). For example, 
the vapor pressure of water is less over aqueous solutions than over pure 
water; thus one requires less saturation than expected for pure water. 
Based on the thermodynamic argument, because of the Kelvin effect, one 
requires less saturation for the larger droplet. Therefore, from these 
two effects, droplets in a cloud can grow much more easily than can droplets 
undergoing the homogeneous nucleation process. A simple expression for 
the relationship between the supersaturation for water, and the sol.ution 
effect and the Kelvin effect may be expressed as followJ 2 

In(PIP H 0) • (2My/pRT)'(1/r) + In(a) coex, 2 
(4a) 

where M is the molecular weight of water vapor, y the surface energy of 
the droplet of solution, R the gas cons~ant, r the radius of the droplet, 
p the density of the droplet of solution, and a the activity of the sub
stance dissolved in water as defined in the last section. If one assumes 
that Raoult's Law governs the equilibrium vapor pressure over the solution 
instead of the measured activity a, then the supersaturation can be 
written as 

[ 
im'M J PIP H 0 - exp(2My/pRTr)'l + 

coex. 2 W(4/3'~r3p - m') 
(4b) 

where m' is the mass of solute, W the molecular weight of solute, and i the 
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Van't Hoff factor for the degree of dissociation of salts. This treatment was 
fi~st_used by Kohler,ss modified by Wright,s .. and re-examined by McDonaldS 5 

and Mason. 3 6 

Here we would like to point out that this process of heterogeneous 
nucleation on soluble droplets does occur in the atmosphere for RH <100% 
for aqueous solution droplets. For droplet growth on soluble particles 
involving solid phase, Eqs. (4a) and (4b) cannot be applied directly 
because the production of a crystalline phase may require additional 
supersaturation in the solution. An empirical formula was deduced by 
Winklers 

7 to stud] the growth law of atmospheric aerosols involving 
"mixed particles' 8 of soluble and insoluble particles. 

In order to form ice crystals from pure water homogeneously, the water 
must be supercooled to at least _400 C. S9 Therefore, the majority of ice 
crystals which form in clouds with temperatures much higher than _400 

. 

will be a result of heterogeneous nucleation. Depending on temperature, 
pressure, water content, and available surfaces, three major mechanisms 
are responsible for the formation of ice crystals in th~ atmosphere: 
(1) immersion nucleation (nucleation of freezing by a particle immersed 
in water); (2) deposition nucleation (nucleation of freezing by the deposi
tion of water vapor on surfaces); and (3) contact nucleation (nucleation 
of freezing induced by a particle during first contact with supercooled 
water)."o 

Most studies of ice formation by heterogeneous nucleation processes 
derive from the basic concept of classical homogeneous nucleation theory -
a macroscopic-thermydynamic approach. 25 Therefore, some weaknesses 
of the classical nucleation theory, e.g., the use of bulk surfaoe tension 
values for microscopic nuclei, also occur in the study of heterogeneous 
nucleation. Furthermore, because the nucleation of foreign surfaces 
involves an additional degree of freedom, e.g., the nature of the nucleating 
surface, heterogeneous nucleation processes are more complicated to study 
than are homogeneous processes, and additional problems have been encountered 
such as the use of contact angles to describe equilibrium conditions for 
an embryo on a heterogeneous surface, and the difficulty associated with 
the treatment of the roughness of the surface. Detailed discussion of 
problems associated with heterogeneous nucleation processes will be pre
sented in the following section. 

IV. PROBLEMS ASSOCIATED WITH VARIOUS NUCLEATION THEORIES 

In this section, selected problems associated with various nucleation 
theories are examined in detail. For homogeneous nucleation theory we 
use the Fisher droplet picture2 • 41 and measured values of the second 
virial coefficient to determine the "microscopic" surface tension for 
small droplets. The estimated "microscopic" surface tension can then be 
used in the classical theory to calculate the nucleation rate. This 
approach circumvents such controversial problems as rotational,. translational, 
configurational. and replacement partition function and gives excellent 
agreement between experimental measurements and our theoretical calcu-
lations of the nucleation rates for various substances. For heteromolecular 
nucleation theory we discuss the surface enrichment effect for a binary system. 

. ...... 
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"microscopic" surface energy and hydration effect on small droplets, and 
their effects on calculations of the nucleation rate. For the formation 
of ice crystals we present a model to study heterogeneous nucleation on a 
substrate. This model gives an equilibrium concentration (aexp[-~G/kT], 
where ~G is the free energy of embryo formation) without inv.olving macro
scopic thermodynamic parameters such as "contact angle," etc. A general 
approach for studying this heterogeneous nucleation process is qualitatively 
discussed. 

A. Homogeneous nucleation theory 

As we pointed out before, the "m:i.croscopic surface tension" is one 
of the most important parameters for studying nucleation theory. We 
adopt the Fisher droplet picture for studying "critical phenomena" to 
vapor-to-liquid nucleation theory of pure fields, and show how, from the 
static equation of state, one can determine some parameters, e.g., "micro
scopic surface tension," entering the theory of nucleation, a time-dependent 
process. 

Fisher's droplet picture for the gas--to-liquid phase transition 
phenomenon has been applied to study gas-to-liquid nucleation processes. 2 ,42.43 

The parameters used in this model can be determined by experimental measure
ment of the critical exponents. 44 The validity of extending this model 
from the critical point to the triple point has been examined by considering 
the equation of state 46 and condensation by impinging in a dense medium. 43 
The agreement betweell this model and experimental data for the equation of 
state is 1% for water from the triple point to the critical point, and there 
is no essential difference for different treatments of the impinging rate. 
Here we would like tC) summarize the advantages of this model as follows: 
(1) controversial problems, such as the rotational, translational, configura
tional, and replacement partition function can be circumvented by use of 
this model; (2) this model covers a temperature range from the triple point 

'to the critical point; (3) the "microscopic" surface tension can be esti
mated; and (4) the s:tmplicity of this model means that it can be easily 
adapted for practical research problems. 

We now outline the Fisher droplet picture and the formulation of the 
estimate of the microscopic surface tension for a small droplet. The free 
energy of a liquid drop containing n molecules can be written in the general 
form as Eq. (la), and the equilibrium concentration e(n) can be expressed 
as Eq. (lb). With the assumption that the excluded volume effect between 
clusters is negligible, the equation of state for the infinite system is 
a generalization of the ideal gas resuls, P/kT = e(l) = N/V, to a mixture of 
ideal gases with the components being the subset of all clusters with one 
molecule, all clusters with two molecules, all clusters with three molecules, 
etc. Thus the pressure of the system is 

co 

P/kT - I (Sa) 
n-l 
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and the density of the vapor p = ap/a~ .. [ap/aln(y)]/kT is given by 

C1 n n x y (5b) 

Note that the critical point is defined at x = y = I, where x = 1 defines 
the critical isotherm (T = T ) and y a 1 defines the coexistence curve. 
With Fisher's droplet picturg, the parameters, and C1 can be determined by 
directly measurf~ critical i"?,dices [e.g., along the critical isotherm.: 
(p _p) a(~ _~) 2 a (~ _~)l 0; along the coexistence curve: (p _p)« 

C C C c 

(Tc-T)';2 .. (Tc-T)S, where Tc'Pc and ~c are the critical temperature, critical 
density, and critical chemical potential respectively.] For water45 the 
critical exponent 0 is found experimentally to be 4.3, giving a value of 
, - 2.23, similarly, S has been found to be 0.35, resulting in a value of 
C1 - 2/3. Due to the universal nature of fluid systems near the critical 
region,47 all the critical exponents for fluid systems have the same value. 
Here we use, .. 2.23 and C1 .. 2/3 for our calculation of the "microscopic 
surface tension." The extimate of the microscopic surface tension can be 
determined by evaluating In x (see Eq. (3». 

From Eqs. (5a, 5b), the compressibility factor is 

-~ nC1 nIT nC1 n 
P/pkT • (l n 'x y) / (l n - x y) (6) 

Except near the critical region, for nearly ideal gases, n .. 1 and n .. 2 
are the most important contributions to the compressibility factor. Thus, 
along the coexistence curve (y - 1) Eq. (6) can be approximated by 

_, 2C1 1 , 2C1 
P/pkT - (x + 2 x ) / (x + 2 - x ) (7) 

Also, the compressibility factor can be expressed by the virial expansion 

P/pkT - I + Bp + Cp2 + •••.•••• (8) 

where B .. second virial coefficient, C a third virial coefficient, etc. 
With C1 - 2/3 and , .. 2.23 determined experimentally as mentioned above, In x 
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can be evaluated from Eqs. (7) and (8). We obtain 

1 -4. 69 (Bp) (9) 
ln x • o:5874ln 1 + 2(Bp) 

The nucleation rate predicted by Fisher's droplet model is derived in 
reference (2) and can be expressed as 

P (2 kT)~ 11 1(1+1"-0')/0' Al+1"-a( ~ A-W r(W+1"-O'+1}J (10) 
J. 15l q .1Tm1 n x L ~ I 

o ~O 

rex) is the Gamma function, 

where Pl , 51' and m, are partial/sressure, surface area and mass of single 
molecule, and A u (In y)/[ln xli, (scaled supersaturation2

). For 0' .. 2/3 
and T a 2.23 and small A, Eq. (10) can be approximated as 

(11) 

The results of the ratio of the nucleation rate predicted by Eq. (11) to 
that predicted by the "classical" theory for several substances are presented 
in Table II. Data for the calculations were obtained from Dawson et al.,12 
Jaeger et al.,13 and Katz and Ostermeyer. l~ Values for the second virial~8 
coefficient were either obtained from the compilation by Dymond and Smith 
or calculated from the tables in Hirschfelder, Curtiss and Bird.~9 

Note that for the substances listed in Table II, agreement between 
theory and experiment is remarkably good, particularly in view of the extreme 
sensitivity of the calculations to small changes in the parameters. 

We might mention that the calculations for In(x) could be greatly 
refined. For example, the third and higher order virial coefficients could 
be considered, however, the calculations which we have carried out are not 
intended to be more than order-of-magnitude estimates, given the lack of 
precise data for vapor pressures and virial coefficients. 

It should also be noted that the experimentally determined nucleation 
rates may be imprecise due to impurities in the nucleating substance. This 
leads to processes such as heterogeneous or heteromolecular nucleation or 
both, which will greatly enhance the nucleation rate, and thus lead to experi
mentally measured values of required supersaturation which would be much 
lower than those required for pure homogeneous nucleation. 

In conclus:f.on, from our "microscopic" surface tension calculation, 
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it is our observation that classical nucleation theory can be considered 
as adequate, provided the appropriate value of the ''microscopic'' surface 
tension is used. The discrepancy between the "classical" and the "Lothe-Pound" 
theories may be due to the difference between the surface tension of a bulk 
liquid and that of a small droplet. 

B. Heteromolecular nucleation theory21'~ 

To study the heteromolecular nucleation theory for a binary system, one 
generally expresses the formation energy of a droplet consisting of nA water 
and ~ low-volatility reactant gas molecules: 

(12) 

where ~c - chemical potenti~ls of the two molecular species, if gas and 
liquid are in equilibrium over a flat mixture surface, ~ a actual chemical 
potentials in the supersaturated atmosphere; S = surface area of the droplet, 
depending on the number of molecules ~ and ~; y - concentration-dependent 
surface tension for the droplet; and A-· ~/(nA~) :mole fraction. Again, 
a closer examination of the parameter of surface tension for small droplets 
is most desirable. As in the study of homogeneous nucleation theory. the 
static thermodynamic equation of state (including the second virial coeffi
cient) can be used to determine the "microscopic" surface parameter in 
sutdying heteromolecular nucleation theory for binary systems. Here the 
droplet consists of nA and nB• For a fixed mole fraction. X. there correxponds 
a given second virial coefficient. B(X). Thus. microscopic surface parameters 
for small droplets can be estimated. A preliminary study50 shows that the 
calculated microscopic surface tension can be 30% lower than the measured 
bulk liquid surface tension. 

Other problems associated with the study of heteromolecular nucleation 
theory for binary systems result from the chemical properties of a binary 
system in a small droplet. such as the surface enrichment effect and the 
hydration effect. 

A correct heteromolecular nculeation theory for binary systems must 
take into account the fact that surface tension in general depends also on 
the composition of the liquid droplet. For example. in an ethanol-water 
solution, surface tension decreases with increasing ethanol concentration. 
Furthermore, by the Gibbs adsorption equation~l the concentration of the 
ethanol molecules is stronger on the surface than in the interior of the 
liquid (surface enrichment effect) and thus the surface tension is less. 
Recently, Stauffer et a1.,50 have introduced a material independent con
tinuum theory to study the surface enrichment effect for the small liquid 
droplet. In this theory, the variation of composition is assumed to give a 
free energy contribution proportional to the square of the concentration 
gradient. For ethanol and water, this treatment of the surface enrichment 
for a small droplet provides a 42% smaller contribution of the surface 
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energy to the formation energy of a small droplet. This continuum theory 
has been tested by Monte Carlo methods for the lattice gas mode1 50 and the 
agreement is good. These surface enrichment effect correction calculations 
have included both the spatial composition variation and the curvature 
effect for small droplets, Taken together with the "microscopic surface 
tension" considerat:Lon estimated from the second virial coefficient, one may 
speculate that of the 42% smaller contribution, 30% may be due to the curva
ture effect and 12% may be arrived by the spatial composition variation. For 
an ideal binary system the surface enrichment effect is not important, but 
for systems like ethanol-water, NH3-H20 and H2S04-H20 the surface enrichment 
effect needs to be examined. An aad:l.tional effect that should be considered 
when studying the heteromolecular nucleation process involving H2S04-H2 . 
is the hydration effect in the liquid mixture droplet. Heist ano Reiss 2 have 
recently constructed the free energy surface for a droplet containing nA water molecules and nu H2S0~ molecules. In their study, the surface predicts 
the existence of stab!e H S04 hydrates in the vapor phase and the number of 
hydrates has been calculaEed for different relative humidities. Shugard 
et al.,5~ extended this study of hydration effect to heteromolecular nucleatio~ 
for the binary system H2SO -H ° and found that a finite nucleation rate is 
predicted with a relative tt~dity of 50% and H2S04 vapor activity of 10~ • 
This result gives a nucelation rate higher by a factor of l~ than the 
previous calculations made without considering the hydration effect.21-~ No 
correction for surface enrichment and curvature effect were included in any 
of these calculations. The hydration effect for a relative humidity much 
greater than 100% would be more sign:l.ficant for the study of nucleation. 

C. Heterogeneous llucleation on substrate 

The simplest case for the study of heterogeneous nucleation on a sub
strate is to consider an ice embryo :I.n the form of a spherical cap forming on 
a plane solid surface. Here we briefly review the basic approach (classical) 
often used to study this nucleation process and discuss the problems asso
ciated with the parameters entering :f.nto the calculation of nucleation rate. 
In classical ruc1eation theory, the nucleation rate is contributed by the 
product of the kinet:Lc coefficient and the exponential function of the free 
energy of formation of a critical embryo on the nucleating surface (exp -
AG*/kT). The free energy barrier (~G*) for the formation of a new phase is, 
in general, in the order of magnitude of 40kT or more, which gives an exponen
tial factor on the order of magnitude 10-1 8 or smaller. A 10% change of 
~G* will give a change in the nucleation rate of two orders of msgnitude. 
Therefore, ~G* is a more sensitive parameter for studying the nucleation rate, 
and our discussion will be largely devoted to this quantity. 

The free energI of formation of an embryo on a plane solid surface is 
usually written as 5 

(13) 

where ~G12 is the f:~ee energy difference (per unit volume) of phase 2 between 
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matter in state 1 and matter in state 2, Yii is the surface free energy of 
the interface between phases i and j, V is ~he volume and S is the surface 
area. The cap dimensions can be specified in terms of the radius r and the 
contact angle e (see Fig 3). The contact parameter m - cos e =(Y13-Y23)/Y12 
is used to determine the free energy of a critical embryo as follows 

~G* • (4nyi2/3~Gi2)' f(m) 

f(m) = (2 + m) (1 - m)2 (14) 

Thus the essential parameters for the free energy of a critical embryo are 
the surface tension Y12 and m. Other nucleation processes, such as deposi
tion nucleation on insoluble particles, and contact nucleation, are based 
on this approach to determine the free energy of an embryo. 

Most calculations of nucleation rate have used the bulk thermodynamic 
properties, such as the bulk liquid surface tension and the contact parameter, 
for the evaluation of the free energy barrier. At this point, we would 
like to point out a serious defect in this approach for studying hetero
geneous nucleation theory. First, the use of bulk liquid surface tension 
for the surface free energy of a small cluster is not well justified. 
Again, a 10% difference in the estimation of the surface tension Y12 will 
give a 30% change in ~G*, which can lead to a change of the nuclea~10n rate 
of seven or more orders of magnitude. Secondly, the height of a critical 
embryo above the nucleating surface is, in general, about 10 A or less, 
which corresponds to a thickness of few molecules. Thus the concept of 
contact angle applied to the study of heterogeneous nucleation on substrate 
is ambiguous. Even though there are experiments 56 in good agreement with the 
theoretical predictions, one simply cannot take this theoretical interpre
tation too seriously before a closer examination of these parameters has been 
made. 

Here we would like to propose a model for the study of heterogeneous 
nucleation on a substrate to clarify some of the ambiguities mentioned above. 
Binder and Hohenberg 57 recently have derived a cluster model, based on Monte 
Carlo calculations, to study the surface effects on magnetic phase transi
tion. In their cluster model, the free energy for the formation of a surface 
cluster (a cluster that touch~s a free surface) can be expressed as 

where the first two terms are exactly the same as the first two terms in 
Eq. (la) which corresponds to the first two terms in Eq. (13); the third 
term describes the interaction of the interface between the surface cluster 
and the touched surface which corresponds to the third term of Eq. (13). 
(hl is the field and c is a constant.) The logarithmic and constant terms 
are the correction due to the configurational entropy, vibration contribu
tion, etc., which are analogous to the last two terms in Eq. (la) in the 
bulk. Here O. <0 <1, and 0 .. <01 <1, for spherical cluster 0 - 2/3 and 
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01 - 1/3. The advantages of this proposed model are that (1) it is simple, 
semi-phenomenological and easily applied to practical research problems; (2) 
it is general (the model includes the entropy corrections and other possible 
contributions~ and (3) it avoids the bulk parameters such as surface tension 
and contact parameter. 

To determine these parameters (a,Ol,T',X,ch1) used for the nucleation 
study, the experimental data of the correctly chosen thermodynamic properties 
can be used. For example, 0,01, and T' can be determined by the critical 
indices, and x can be determined by the second viria1 coefficient as demon
strated in the prev:Lous sections. ~'3par~,~ter c is a geometric constant 
and it can be approximated as (3/41r)·· V- where V ils the volume per 
molecule. The determination of h1 is re1a~ive1y a neS approach and we would 
like to discuss the background concept in the following paragraph. 

Similar to the method for determination of "microscopic surface tension" 
by using the viria1 coefficients for homogeneous nucleation theory, the 
second gas-solid viria1 coefficient D2s can be used to determine the interface 
interaction parameter h1 • B2s is defined as . 

(16) 

where W1 is the potential of average force for a single adsorbate molecule 
interacting with the adsorbent and' {Us} is the set of chem!ea1 potentials 
of the adsorbent. Since the potential of average force constitutes the inter
action energy of the adsorbate molecules as the sum of all interactions with 
the molecules of the adsorbent averaged over all allowable configurations 
of the adsorbent molecules, the second gas-solid virial coefficient B2s 
does implicitly contain the information of the interface interaction para
meter h1 (the energy parameter generated by the interaction between the 
adsorbent and adsorbate molecules). To obtain more accurate information on 
the interface interaction h

l
, higher order gas-solid viria1 coefficients 

are needed, e.g., B3S which contains the average interaction between two 
adsorbate molecules and the adsorbent molecules. For a nearly ideal gas 
the interaction parameter h1 can be obtained from the following equation 

B2s '" n k'f/J? ads (17) 

where n d is the number of moles adsorbed and P is the bulk pressure. 
A detadea expresdon for h~ can be obtained from the above equation with 
approximations sim:l.1ar to tHose of Eqs. (6) and (7) 

(18) 
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where z = In(chl ). 

Most experimental data of B are reported for inert gases and organic 
gases on carbon. 5 e No quantitatt~e calculation for the determination of 
hI has been made because there is no experimental measurement of B2 avail
aole for studying the heterogeneous nucleation on substrate. It issour 
recommendation that such experimental studies (e.g., apply gas chromato-
graph to obtain B2 for water on AgI) should be performed for the determin
ation of the inter~ace interaction parameter hI' Other approaches involving 
the available thermodynamic quantities (such as the isosteric heat of adsorb
tion and adsorbtion isotherms) to evaluate the interface interaction parameter 
have been studied for the interaction between water vapor and pure silver 
iodide in the vicinity of saturation. s9 This new approach which applies 
other related thermodynamic properties to the determination of the inter-
face interaction parameters and which avoids the usual approach by using 
the bulk liquid surface tension and contact parameters may provide a better 
insight for the study of heterogeneous nucleation. 

V. CONCLUSION 

There is little doubt that the nucleation processes play a significant 
role in the study of atmospheric sciences. For relative humidity below 
100%, the heteromolecular nucleation process gives the mechanism for the 
initial stage of aerosol formation. If the role of aerosols in-the urban air 
and in the stratospheric atmosphere is to be understood fully heteromole
cular nucleation processes cannot be neglected. For.relative humidity larger 
than 100%. the heterogeneous nucleation processes (~ither on soluble or 
insolbule particles) are the dominant mechanism for the formation of cloud 
droplets and ice crystals. While the significance of the study of nucleation 
phenomena in the atmosphere appears to be fairly well recognized, the basic 
theory for various nucleation processes is not well understood. For the 
study of homogeneous nucleation theory, a new approach for the determination 
of the parameters entering in the calculation of nucleation rate is presented 
and the theoretical predictions are in good agreement with the experimental 
measurements. Thus we suggest that classical nucleation theory can be 
considered as adequate, provided the appropriate value of the llmicroscopic ll 
surface tension is used. This approach has been extended for the study of 
a heteromolecular nucleation theory for binary systems and of heterogeneous 
nucleation on a substrate to determine the parameters used for the study of 
nucleation theory. To confirm the theoretical prediction it would be desir
able to obtain more experimental measurements for the necessary thermodynamic 
parameters and nucleation rates. 
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Fig. 3 Heterogeneous Nucleation on a Substrate : Embryo 2 on Nucleating 
Surface 3 in Parent Phase 1, where r is the radius of the embryo 
and e is the contact angle. 
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TABLE 1 

Ratio of nucleation rates measured experimentally 

to nucleation rates predicted by classical theory 

Substance J I J exp class 

H2O 104 

C2HSOH 105 

NH3 1012 

C6H6 lOB 

CHC13 1018 

CC13F 1014 

TABLE II 

Comparison of ratios of nucleation rates 

(3: calculation from "microscopic" p\1rface 
tension) 

Substance ']~emp(oK) S • PiP 
0 

JIJ class J IJ e292 class 

H
2
O 323 2.58 101 104 

CH30H 313 1.4 10-6 100 

C2H5OH 313 7.39 104 105 

NH3 240 2.B 1011 1012 

C6H6 230 100 lOB lOB 

CHC13 323 3 1012 101B 

CC13F 240 5 1015 1014 
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ABSTRACT 

A review of the aurrent meteoroZogiaaZ theory 
of droplet growth is presented. Some aomparisons 
with e~periment are e~hibited~ and good agreement 
is found. The theory is presented so as to 
emphasize its ZogiaaZ deveZopment from basia 
physiaal ideas. It is aast into a very simple form 
whiah aan be used to reveal the similarities of 
various other forms appearing in the literature. 
A few speaiaZ formuZas are dispZayed whiah are 
usefuZ in aertain praatiaaZ appZiaations. Some 
impZiaations of the theory regarding size distri
bution broadening are disaussed. The theory is 
aompared with measurements of the growth of water 
drops in the one-haZf-to-ten miaron size range 
whiah were made in Argon and aip by Zaser saatter
ing techniques. Saattering from a He-Ne (6328 j) 
Zaser off of drops produaed by homogeneous nuaZea
tion~ and thereafter grown at supersaturation ratios 
ranging from about Z.2 to 3.6~ was aompared with 
the Mie theory prediations and radius vs. time 
aurves deduaed. GeneralZy good agreement was 
found between the conventionaZ theory of drop 
growth and e~periment. The theory was fit using 
one parameter invoZving both aondensation and 
thermaZ aaaommodation aoefficients. 

INTRODUCTION 

The present treatment of dropwise condensation (or evapora
tion) is divided into two parts: (1) the theory is presented 
as it is normally used by atmospheric scientists, that is in 
application to clouds, and (2) a brief comparison with experi
ment is limited to cloud chamber work performed by J. Carter in 
the UMR Cloud Physics Center. 

In (1) the emphasis has been a step-by-step exposition of 
the basic theory rather than on the history of its development. 
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It perhaps should be mentioned at the outset that the equations 
describing growth are subject to various simplifications 
peculiar to their atmospheric application. One of the most 
important of these resides in the fact that at any given time a 
cloud droplet generally experiences a very small supersatura
tion. "Final" equations have generally been written with this 
simplification in mind, and appropriate modification must be 
made for larger supersaturations (or undersaturations). 

GOVERNING EQUATIONS 

In treating cloud droplet growth it is perhaps most practi
cal to adopt the macroscopic point of view and write down the 
continuum equations governing the growth or evaporation process. 
In doing so it is assumed that the drop diameter is rather 
greater than a mean free path. This regime usually covers cases 
of interest in cloud physics, and is amenable to extensions into 
the "transition" regime. 

Briefly, the process of growth involves the transport of 
mass (vapor) toward the drop, release of latent heat at the 
drop surface, a subsequent heating up of the drop, and as a 
consequence of the latter, a thermal energy transport away from 
it. The continuity of water vapor concentration, n (moles/vo1.), 
outside the drop may be written: 

(1) 

where I is the molar flux of vapor given by, 

~ -(n+n)D ~ 

I = (1-~) [VOx + a' (x)V'lnT] +{~xlg (2) 

Here x is the mole fraction of vapor, n the vapor molar con
centration, D the diffusion coefficient of water vapor in air, 
T the temperature field (governed by a corresponding equation), 
ig the molar flux of air, ng the molar concentration of air, 
and alex) the thermal diffusion factor. 

Considerable simplification of this equation is justified 
for normal atmospheric situations. Water vapor is a dilute 
solute in the atmosphere, so that the term n/ng can be neglected 
compared with unity. [This corresponds to neglecting Stefan 
flow, (Fuchs 1959)]. Thermal diffusion and its inverse are 
small enough to be neglected (Neiburger and Chien, 1960). The 
motion of the air relative to the drop is almost always ascri
bable to drop fall. and Vg can be inferred from the Stoke's 
law velocity. 
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This effect is negligible up to about 10 microns (Squires, 1952). 
Beyond this size the effect of fall can be incorporated semi
empirically (Frossling, 1938; Squires, 1952) by a ventillation 
factor which multiplies the diffusion coefficient. It is usually 
a minor correction inasmuch as its effect on condensation drop 
growth is most pronounced when the latter is no longer the 
dominant growth mechanism. [According to Squires D or K can be 
multiplied by the approximate factor, 

1 + 0.24 ,IRe, 

where Re is the Reynolds number] . 

(3) 

With the above simplifications the flux equation reduces to 
one of simple diffusion, 

2 ap 
DV' p = -:rt' (4) 

where p is the vapor density and D is regarded as constant. 
Arguments similar to the above apply to heat conduction leading 
to 

2 aT 
kV' T = -:rt' (5) 

where k is the thermal 
or simply that of air. 
required to specify the 

diffusivity of the air-water vapor mixture, 
Three of the four boundary conditions 
solution can be written down immediately. 

p(.."t) = P..,Ct) 

TC"', t) = T .. (t) 

2 aT ap dTd 
41Ta [K "'="r + LD 1 0: Cd(a) 

OL aT r=a err 

(6) 

(7) 

(8) 

where p and T are bulk values of the vapor density and tempera
ture Cwiiich can be functions of time), a the drop radius, K the 
thermal conductivity of the gas, L the latent heat of condensa
tion, and CdCa) the heat capacity of the drop which is to good 
approximation characterized by the uniform temperature Td • 
Fuchs (1959) has shown that heat loss by radiation can be neglec
ted for the size range here contemplated. (Discussion of the 
third boundary condition is deferred). 

The final simplification invokes the idea of quasi steady 
state. It is based on the assumption that the transients appro
priate to the diffusion problem are small enough so that the 
steady state profiles "follow" the outward motion of the drop 
surface. The transient regime is discussed by Carstens and 
Zung (1970), Nix and Fukuta (1973), and the use of quasi 
steady state criticized by Kirkaldy (1958). 
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With the above simplifications the flux equations reduce 
to: 

(9) 
and 

(10) 

The notion of qua.si steady state does not rule out the possibility 
that p and T be slowly varying functions of time in (6) and 
(7). ~Condit!on (8) becomes simply, 

K dTI + LD dPI = 0 ar r=a ar r=a . (11) 

The steady state solutions to (9) and (10) are: 

P = F (Pa -- p • .) + P~, (12) 

and 

T = ~ (T - T ) + T • r a ~ ~ 
(13) 

These solutions, incidently, are never attained since it would 
take an infinite amount of mass (and heat) to establish them. 
The solutions are necessarily poor far away from the drop. The 
validity of the quasi steady state approximation resides (in 
part) in the fact that the "correct" solutions are achieved very 
quickly near the drop and, even though the drop derives the bulk 
of its mass from remote regions, its actual growth rate depends 
on the gradient at the drop surface. 

Finally, the presumably slow outward motion of 
surface reintroduces time into what would otherwise 
steady state proc:ess (hence "quasi" steady state). 
"growth" equation is: 

da _ D dPI 
at - Pi' ar r=a 

where Pt is the liquid density. 

the drop 
be a 
This 

(14) 

Two somewhat different treatments of the growth process 
exist in the meteorological literature. Both are based on the 
above assumptions. They differ in that the most common approach 
assumes that the transport process is entirely controlled by the 
diffusion of mass and conduction of heat, while the alternate 
approach posits the possibility of additional control exerted 
at the liquid-vapor interface. This difference appears in the 
final boundary c()ndition at the drop surface. 
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DIFFUSION CONTROLLED GROWTH 

In what is perhaps the most common treatment of drop 
growth (Fuchs, 1959; due to Maxwell), it is assumed that to 
good approximation thermal equilibrium between vapor density 
and temperature holds at the drop surface. In addition to its 
dependence on temperature, the dependence of thermal equilibrium 
both on drop curvature and dissolved salt often must be taken 
into account. We can write this radial dependence formally 
'in terms of a saturation ratio, 

= Peq (.a,ms ' T) 
Ssat Peq(~,O,T)' (15) 

where Pe (a,m ,T) is the equilibrium vapor density over a drop, 
of radiu~ a and dissolved salt mass m and Peq(~,O,T) is that 
over a flat, pure surface. We therefO;e have the equilibrium 
condition: 

Peq(a,ms,T) = Ssat(a,ms)Peq(~,O,T). 

The temperature span involved in the applications is ordinarily 
sufficiently narrow to justify a linear relationship between 
PeQ(~,O,T) and T, so that the final boundary condition can be 
wr:rtten: 

Peq(a,Ta) = (bTa+c)Ssat· 

The constants band c can be (and usually are) obtained by 
keeping linear terms in a Taylor expansion of the Clausius
Clapeyron equation' about T~. 

(16) 

The condition (16) completes the problem and leads to the 
growth equation: 

where the liquid density is unity. Here we can identify the 
numerator as the "driving force" and the denominator as a 
"resistance" composed of mass and thermal components. For 
constant ambient conditions, and supersaturation ratio, S, 
close to unity, a solution is: 

tea) = 

(17) 

(18) 
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where 

1 1 + bL 
Deff IT -X. 

For temperature at about 30 C, the thermal "resistance", 
E.i, begins to dominate growth. This can be seen by splitting 
the time in (18) into two parts, one associated with the 
thermal resistance. With t=t +tT, we have: 

P aCt) 
t = bL _1 f x dx 
T -X Pe~ S-Ssat 

ao 

(20) 

aCt) 
=11 f xdx 

tp IT PeqCOOJ S-Ssat 
ao 

At 30 C the ratio tT/tp is about 1, at 300 C nearly 4. 

(21) 

Finally it should be pointed out that Ssat(a) is usually 
identified with the Kohler curve: 

Ssat(a) ::0 1 
rll Am s + --a7 (22) 

where rll is a constant obtained fr2m the Kelvin-Thompson equa
tion (curvature effect) and ms(A/a ) from Raolt's law. Deriva-
tion and discussion of the Kohler curve may be found, for 
example, in Fleagle and Businger (1963). 

GROWTH CONTROLLED BY DIFFUSION AND SURFACE KINETICS: DIFFUSION
KINETIC APPROACH 

In the previous development it was assumed that drop growth 
is controlled both by the rate at which vapor molecules are 
transported to the surface by diffusion, and the rate at which 
thermal energy is removed from the surface by conduction. This 
transport process can obviously be affected if, in the first 
case, vapor molecules do not always stick to the surface upon 
striking it (or are inhibited from evaporating), and, in the 
second case, if the gas molecules on the average acquire some 
reduced fraction of the surface energy upon collision. These 
possibilities naturally lead to a consideration of coefficients 
of condensation, evaporation, and thermal accommodation. 

The thermal accommodation coefficient, a, can be defined as: 

(23) 
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where according to Kennard (1938) Ei denotes the energy brought 
up to unit area per second by the incident molecular stream, 
Er that carried away by these molecules as they leave the wall 
after reflection from it, and Ew the energy that this latter 
stream would carry away if it carried the same mean energy per 
molecule as does a stream issuing from a gas in equilibrium at 
the wall temperature Tw' 

It is perhaps timely to discuss the evaporation and con
densation coefficient in the context of water drops that may 
possess impurities, especially as such considerations may be 
important in cloud physics (Bartlett and Jonas, 1972). The con
densation coefficient can be taken to be the fraction of incoming 
vapor molecules that strike the surface and stick to it. The 
evaporation coefficient may be defined relative to the conden
sation coefficient as the fraction of molecular flux that would 
emanate from a pure surface at the same temperature (this being 
the condensation flux under equilibrium conditions at that 
temperature). A relative condensation coefficient may be 
similarly defined. The following simplified illustrative model 
may serve to fix these ideas. Consider a water surface upon 
which condensation (or evaporation) occurs. Let us for the sake 
of argument evaluate the fluxes involved from uniform (ideal) 
gas kinetics. For pure water (superscript zero) the flux is 

1(0) = 1 v e (o)(n_n (0)) + 1 I(o)e(o) 
4 c eq ! c 

or e (0) 
I(o)(l-~) = 1 v e (o)[n-n (0)1 

~. 4 c eq' (24) 

Here ec
CO ) is the condensation coefficient for pure water, v the 

average molecular speed, n the actual water vapor mo~ecular con
centration, and ne (0) the equilibrium concentration at the sur
face temperature. qThe factor 1(0)/2 accounts for the fact that 
the condensation process itself establishes a net flow of vapor 
toward the surface which is not accounted for by kinetic term 
alone. Next, consider the surface of ttcontaminatedtt water. From 
a purely phenomenological point of view the condensation and/or 
the evaporation flux could be altered. The condensation term 
may be changed to 

e~ [} n v ec
CO)1, 

where e~ is the relative condensation coefficient, o<e~ ~l/ec(O). 
Likewise the evaporation flux can be affected; that is the flux 
that would ordinarily evaporate off a pure surface is changed by 
a factor e~ (evaporation coefficient), i.e., 
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.. ~. ~" ... ' 

ae' [1 n (0) v a (0)] 
4" eq c· 

a (0)13' v 
c c 

=~--

, 
a 

[n- e n (0)] -,- eq ac 

The new equilibrium "position" is, 

and the shift in equilibrium, 

, 
ae n (0) 
-r- eq , ac 

n -n (0) 
eq eq 
n (0) 

eq 

In terms of the displaced equilibrium, 
, (0) 

ac ac v' (0) 
1(1-- 2 )= if3c ac (n-neq) 

(25) 

(26) 

(27) 

with a~ ac(O) the condensation coefficient for the contaminated 
surface. This illustration is only meant to define these 
coefficients in such a way as to correspond with common sense. 
Clearly the kinetics of the process, that is the rate at which 
equilibrium approached, is affected by the condensation coefficient 
cac=a~ ec(o)) alone, while the shift in equilibrium obviously , , 
requires a difference in ac and ae . 

In the case of drop growth the introduction of possible 
surface control requires that the thermal equilibrium boundary 
condition (16) be replaced by mass and heat fluxes. The 
simplest technique, and that usually found in the meteorological 
literature (Langmiur, 1944; Fuchs, 1959; Carstens and Kassner, 
1968; Fitzgerald, 1970; Fukuta and Walter, 1970) consists of 
equating the molecular and energy flux determined from uniform 
gas kinetics to that calculated directly from Fick's and 
Fourier's law. This flux matching is done at the drop surface, 
or in the vicinity of a mean free path of it (Fuchs, 1959). 
This approach has been dubbed the "diffusion kinetic" by 
Smirnov (1971). A very thorough exposition of it is that of 
Fukuta and Walter (1970). 

Using this approach, the mass flux equation around the drop 
is given by: 
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ndPI err r=a 

Here ~c is the condensation coefficient, Ta is the temperature 
of the gas adjacent to the drop, Td that of the drop itself, 
and v the average molecular speed at the temperatures indicated. 
The addition of half of the Fickian flux on the right hand side 
rests on reasoning similar to that given in connection 
with equation (24). (The consistency of adding such a term 
is perhaps more easily seen away from the surface. In a uniform 
gas the number of molecules traversing an imaginary plane is 
}nv in one direction and }nv in the other; the net flux is of 
course zero. If there is known to be a flux -n~ in the gas 
then the uniform flux calculation can be made to produce it if, 
to }nv, one simply adds -}n an/ax.) We next neglect the 
intrinsic temperature dependence of ~ to get c 

The narrow range of temperatures also justifies the simplifying 
approximation, 

~ IT;. ru{;:a ru 1. l'i= r= 
ex> ex> 

The approximate "connection" equation is: 

From the solution (12) it follows that, 
a 

P",,+ra Peq(Td) 
P = a 

where, following Fukuta and Walter (1970) we have introduced 
the length JI. ~ , 

(28) 

(29) 
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-, 
va 

and where 

The departure from equilibrium is, 

Peq(Td)-p.., 
Peq (T d)-Pa = 

l+a/~a 

.. ,.",,, 

(30) 

(31) 

(32) 

and its magnitude is determined by the value of a/~a relative 
to unity. 

As exemplified by eq. (32), the diffusion-kinetic model is 
constructed so that it is valid in the opposite limits of free 
molecular flow (Kn»l) and continuum flow (Kn«l). It may 
thus be regarded as an "interpolation" covering the inter
mediate regime bounded by these two extremes. Smirnov (1971) 
(see also Shankar, 1970) discusses the degree of approximation 
achieved by this interpolation through the regime of inter
mediate Knudsen number. However, the chief merit of the model, 
at least in most cloud physics applications (Rooth, 1957), 
lies in its incorporation of surface effects via the condensa
tion and thermal accommodation coefficients. If a (and/or a) 
is sufficiently small compared with unity, significant surface 
control can extend well into the continuum regime -- a regime 
where the theory purports validity. The smaller either or both 
of these coefficients, the more important it is to ascertain 
their values, since they represent a tendency for surface 
control to be the rate determining process. Kn/a and Knla 
are the important numbers here, and as implied by eq. (32) 
they have to do with the validity of assuming the thermal 
equilibrium; Kn itself of course pertains to the 
validity of using Fick's and Fourier's laws. If a and a 
are near unity the distinction is unnecessary, but in this case 
growth through the regime of intermediate Knudsen number is 
sufficiently fast that one is usually justified in using the 
simpler approach [that is, eq. (17)]. 

The actual magnitude of the sticking coefficient appears 
to be the subject of some controversy (see for example Mills 
and Seban, 1967; Jamieson, 1965; or Amelin, 1966). Values have 
been measured (Alty and Mackay, 1935; Vietti and Schuster, 1973; 
Carter and Carstens, 1974;) that would not be insignificant in 
cloud physics applications (Fitzgerald, 1970; Warner, 1969). 
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In evaluating the energy flux around the drop we will 
follow the analysis of Kennard (1938), appealing to the same 
sort of assumptions invoked in evaluating the mass flux (the 
calculation is done for air): 

Etr is the translational energy of the incoming molecules and 
I I 

Ei is their energy other than translational; Etr and Ei are these 
quantities for the outgoing flux. The average translational 
energy of the molecules in a molecular stream is given by: 

The following identifications are made: 

, 
Etr = ZRTa and Etr = ZRTd • 

This puts ng in m01es/cm3~ and (1/4)n v in the mo1es/cm2/sec, 
so that the energy flux is in ca1/cm2'sec (R is in ca1/oK mole). 
Then, 

Now for an ideal gas 

where C is the molar specific heat at constant volume. 
puttingV8T=Td-Ta and 8E=Ei-Ei gives: 

This leads to: 

KdTI 
- (iF r=a =(1:7 } 

R (x+t) (T -T ) '! x- d a (33) 
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where y is the ratio of specific heat at constant pressure 
to that at constant volume. Using the solution (13) a result 
analogous to (29) is obtained: 

Ta = (T~+r-Td)/(1+a/1a) 
a 

(34) 

where, again following Fukuta and Walter (1970), we introduce 
the length 1a 

The well-known phenomena of "temperature jump" (Kennard, 
1938) is given by, 

which is analogous to eq. (32). 

Now equations (34), (29), and the condition for thermal 
equilibrium, along with the usual'boundary conditions (11) 
(6), and (7) comprise the required six conditions to solve 
for the six "constants" Ta , Td , Pa , Peq(Td), P~, and Teo' It 
is quicker, however, to exploit the idea of "compensated" 
coefficients (Fitzgerald, 1970; see also Carstens, 1972). 
Here the formalism of the simpler theory is retrieved 

(35) 

by "compensating" the coefficients as they appear in eq. (17) 
in such a way that the growth law includes the above surface 
effects. In what follows the simpler theory is referred to as 
the Maxwell ThE~ory with subscript "M". 

The flux c:omputed from the diffusion-kinetic theory is, 

InK = n(Pa -p~)~. (36) 
r 

We write the Maxwellian flux as, 

(37) 

where, if InK and 1M are to be equal, 

n* 
= 

n 
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It is easily shown directly from eq. (29) that, 

D* 
= 

D 

This, as Fukuta and Walter demonstrate clearly, is the key 
manipulation that causes the linear theory [i.e. based on a 
linearization of the thermal equilibrium condition, eq. (16)] 
to have such a simple form. 

Clearly, 

and, analogously, 

it 
D (a) D 

it K 
K (a) = .,.-,-.;:.:--,.."... 

1+R. la' a 

(38) 

(39) 

Now the compensation of K and D insures that the flux is calcu
lated so as to satisfy conditions (28) and (33). But the power 
balance, eq. (11), and growth eq. (14), in fact involve only 
flux terms. Therefore the Maxwellian approach gives the growth 
law, eq. (17), "correctly" with D and K compensated, i.e. 

(40) 

where 
1 1 bL ---.- = -,,- + -,,-. 

Deff D (a) K (a) 
(41) 

(Ssat(a) has here been assumed sufficiently close to unity to 
justify putting b Ssat~ b in Deff). It is easy to establish 
an equivalent form, resembling that of Rooth (1957), 

(42) 

where t is a weighted average of ta and 1a: 

1 
t =(£i ta + ~)/(£i + fr)' (43) 

* -1 It is also clear that, Deff = Deff (l+t/a) • 
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Four contributions to the "resistance" may be identified 
[refer to discussion in connection with equation (19)], 

1 bL 1 10 b 1 
R + + ~ + L ~ 

= rr -X rr a -y a' (44) 

The last two represent the mass and thermal contribution to the 
surface resistance. At a given temperature the single parameter 
~ suffices to account for surface effects. The slope b, how
ever, is responsible for an increasing thermal weighting toward 
~~ as temperature increases. (From the C1ausius-C1ayperon 
equation; 

b ~ p(o) (=)ML/RT 2). 
eq = 

Thus a low value of 13, for example, will have more of an 
effect at lower temperatures than at high. This effect exists 
aside from any intrinsic dependence of 13 or ~ on temperature. 
As mentioned in connection with equations (20) and (21) the 
weighting is about equal at 30 C and nearly fourfold toward 
~~ at 30oC. 

SOME SOLUTIONS 

. Although (40) or (42) is usually solved numerically 
(e.g. Brown and Arnason, 1973), a few solutions may be helpful. 
For constant ambient conditions, 

tea) (xH)dx 
s-s (x), sat 

(45) 

which with Ssat(x) given by eq. (22) can be solved by conven
tional integration (Carstens, ~ a1, 1974). 

If the maximum value of Ssat' that is the critical supersatu
ration Sc' exceeds the applied supersaturation, S, then growth 
is inhibited, and the radius approaches a stable-equilibrium 
value, as' corresponding to the smallest positive root of 
S-Ssat(a)=O. I:f S is not too close to Sc' a rough idea of the 
relaxation time corresponding to the approach of a to as can be 
obtained by linearizing Ss~t around as (Sedunov, 1972), the 
argument being that if the drop attains a radius near as the 
bulk of its growth time is spent in this vicinity. Substituting 
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into eq. (45) gives, 

aCt) = as+(ao-as)exp(t/~), 

with 
- (a +R.) dS I 

~ (S) = s [ sat] -1 . 
(0) aa- as 

DeffPeq (co) 

At S=l, using the Kohler curve, eq. (ZZ) : 

-Am (R.+ ~ ~;) 
~(l) = s 

Z (0) (co) . (r") z 
DeffPeq 

At 17°C with a=l, S=.036 we have R.~1.65~; then for 
~(l)~l sec, and for m =5.8xlO- 13 gms. ~(1)~103. 

s ~ 
For large drops where Ssat(a)~l and a»R., 

( 46) 

(47) 

(48) 

m =10- 15 gms, s 

( 49) 
~ 

From eq. (42) it is clear that surface effects alone (Ssat=l) 
can be taken into account by rescaling the radius: 

(50) 

If curvature and surface effects are small perturbations they 
can both be included by replacing R. by R.+r*/CS-l). 

DROP SIZE DISTRIBUTIONS 

It is safe to say that interactions between growing drops 
exist by virtue of their combined effect on ambient vapor 
density and temperature. Otherwise they can be regarded as 
isolated (Williams and Carstens, 1971). Therefore the above 
theory can be used in infer certain trends in the evolution 
of drop size spectra. This can be done using a simple two 
drop model. 

Consider two noninteracting drops of radius a l and a Z' 
where a l > a Z' growing under identical ambient conditions. In 



addition, consider activated (free growing) drops where curvature 
dominates the effect of dissolved salts. Substituting al and 
a Z into eq. (4Z) and dividing yields: 

* 
a Z 1H/aZ 

r /a1 a1 = 
l---g-::-r 

(51) a l r+!7a l * a Z 
r /a Z 

1---g-::-r 

The first factor on the right implies a narrowing of the spec
trum, and is associated with the basic geometry of the process; 
this term is responsible for the well known narrowing tendency 
of diffusive growth of drops. The second term implies a broad
ening tendency and is associated with surface kinetic effects; 
its effect diminishes as the drops grow larger. The first two 
factors together, (az+~)/(al+~)' imply a narrowing, but at a 
slower rate than that given by aZ/al • The last factor implies 
a broadening, and is ascribable to curvature effects. There is 
also a dependence on the applied supersaturation via the 
"radius", R-r*(S-l)-l. The first and last factors will lead to 
a broadening if a1 - l + az-l>R- l But one would only expect 
significant broadening if S is such as to cause a l to increase 
(growth) and a Z to decrease (evaporation), that is if S inter
sects (due, for example, to depletion) Ssat at the unstable 
equilibrium radi.us, au' where a 2<au<al • Elton et a1 (1957) 

nevertheless argue that this process is too slow to be of much 
importance in cumulus spectra. If the size distribution is 
locali~ed around au sufficiently to justify the expansio~ of 
eq. (46) (around au instead of as) the broadening, 

&1 - a Z = [al(o)-aZ(o)]exp(t/T), 

is characterized by a (positive) relaxation time, 

* * T - [r /(S-l)+~]r 
- (co) 2· 

DeffPeq (S-l) 

The magnitude of T depends strongly on the value of S-l where 
it "cuts" the distribution. At S-l tV 10- 4 (17oC) for example 
T tV 104 sec. At S-l tV 10- 3 , on the other hand T tV 10 sec. 

While there is a tendency for the radial size distribution 
to narrow, no such tendency is implied for areal size distribu
tions, at least under growth conditions: 
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1': 
l-r /(S.l)a l 

* (52) 
l-r /(S-1)a 2 

In this case there is a broadening tendency which diminishes as 
the radii become larger. As fall velocity is directly proportional 
to area (up to about 30 ~), there is no diminution of relative 
fall velocities, but rather the possibility of an early increase. 
(Such a trend may enter into consideration of the "next stage" 
in the growth process, collision-coalescence, especially in 
light of the pronounced increase in collision efficiencies 
displayed by Klett and Davis (1973) in the region of closely 
spaced radii.) The divergence of the mass distribution may be 
similarly argued. 

The remarks made here are confined to direct consequences 
of diffusive growth on size distributions. The spectra of 
nuclei upon which droplets grow can play an important role. 
Spectra are also affected by larger scale dynamics as found in 
clouds (Warner, 1970; Bartlett and Jonas, 1972). Mason and 
Jonas (1974) predicted drop size distributions agreeing with 
those of Warner (1969) on the basis of simple diffusive growth 
(1=0) applied to drops growing (and evaporating) inside spheri
cal thermals which ascend through the residue of their prede-
cessors. Fitzgerald, on the other hand, predicted drop spectra 
in continental clouds on the basis of eq. (40), with measured 
nuclei distribution using a closed parcel model. 

COMPARISON WITH EXPERIMENT 

The experiments herein reported are a direct outgrowth of 
the work of Vietti and Schuster (1973a, b). Some preliminary 
results have already been discussed by Carter and Carstens 
(1974). It should be mentioned that measurements reported here 
do not apply directly to the atmosphere because the super
saturations produced in a Wilson cloud chamber are much larger 
than those produced in clouds. Nevertheless the present analysis 
argues for the general validity of the conventional growth 
theory since one would expect the basic physical mechanism, and 
hence the theory describing it, to be the same at the low as at 
the high supersaturations, and moreover (with changes in con
stants) independent of the non-condensible gas employed. 

It is common to put the thermal accommodation coefficient 
equal to unity (Alty and Mackay, 1935), and we have done so here 
for both gases. Other pairs of these constants will fit as 
well; even though we have some temperature spread we have not 
as yet been able to separate the two parameters. 
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The experimental apparatus, laser, cloud chamber, etc., 
are the same as were used by Vietti and Schuster (1973a, b) 
and we refer to their articles for a full description. The 
droplets were generated by homogeneous nucleation in a Wilson 
expansion chamber and allowed to grow, after nucleation, at 
supersaturat~on ratios ranging from about 1.3 to 3.S. Scattering 
from a 6328 A He-Ne laser at 30 0 (off of the incoming beam) 
provided part of the experimental data. A continuous pressure 
measurement within the chamberprovided the data needed to relate 
growth rate to bulk thermodynamic conditions. Details of the 
pressure and scattering intensity measurements are discussed 
by Vietti and Schuster. Also, these authors discuss the drop 
size distribution (which is narrow, due to the abruptness of 
the generation technique) as well as its influence on the sharp
ness of the Mie peaks. 

From the analysis of Vietti and Schuster, it may be con
cluded that there is a fair agreement between their data 
and the standard growth theory (Fukuta and Walter, 1970). 
Furthermore, it is clear that such agreement can be secured 
with values of either sticking or thermal accommodation 
coefficients considerably less than unity. Our reason for 
looking again at these experiments and the analysis is to uncover 
reasons for what discrepancy exists between theory and experi
ment and attempt to improve the agreement. As will be seen, 
the agreement can be substantially improved, leading not only 
to more confidence in the theory but to a more precise estimate 
of the sticking and accommodation coefficients. 

The growth. in Argon was measured under supersaturation 
ratios ranging from about 1.3 to 3.S. (Appropriate physical 
constants, diffusion coefficient, thermal conductivity, etc., 
were taken from Vietti and Schuster's work where the various 
sources can be found.) Seventeen runs were analyzed, two of 
which are displayed in figures 1 and 2. In fig. 1 the total 
pressure after nucleation runs from 1.37 x 106 dynes/cm2 at 
.3 sec. about linearly to 1.39 x 106 dynes/cm2 at 1.0 sec; the 
corresponding temperatures are 6.4 0 C and 7.80 C. In fig. 2 
these values are 1.43 x lU 6 and 1.44 x 106 dynes/cm2 at 11.20 C 
and 12°C. The dashed line denotes the theoretical prediction 
of growth without depletion of vapor and addition of heat due 
to growth. The solid line follows the data and the lower solid 
line denotes the course of the supersaturation ratio during 
the growth process. It is felt that the two runs shown are 
typical of all our Argon runs. While we did not investigate the 
matter in statistical detail, it would appear that there is no 
systematic difference between the agreements at low and high 
growing supersaturations. 
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The air runs are shown in figures 3 and 4. 
the pressure and temperature at .4 sec are 1.26 x 
and 2.SoC, and at 1. sec 1.28 x 10 6 dynes/cm2 and 

numbers for figure 4 are 1.5 x 10 6 dynes/cm2, 19 
1.5 x 106 dynes/cm2 , 190 C. 

In figure 3 
106 dynes/cm2 

4oC. These 
°c and 

The data of all runs can be fit, to the degree indicated 
in figures 1 through 4, by a = 1 and S = .022; they appear to 
be equally well fitted, for example, with a = .l'and S = .11. 

The problem of "initial conditions" is important in using 
this technique. There is no guarantee that the first observed 
peak is actually the first Mie peak. This may be due to the 
possibility that the first peak, which is weak anyway, is not 
resolved. It may also be that the size distribution is just 
broad enough at the first peak (.45 microns) that it is washed 
out. In systematically decreasing the growing supersaturation, 
we have continuously scrutinized the data for the earliest 
peak. In Argon we have identified the earliest peak as the first 
Mie peak on the grounds that the extrapolation of the growth 
curves through radius "zero" (embryonic size) always passes 
through the nucleation event, i.e. that very narrow portion of 
the supersaturation pulse during which the supersaturation is 
critical. Shifting the data by one peak, that is assuming that 
the first observed peak is really the second Mie peak, leads to 
an extrapolation which clearly precedes the nucleation event. 
Thus in Argon our identification of the first peak depends upon 
the validity of the above extrapolation (i.e. that the growth 
does not drastically depart from the theory below 0.45 microns), 
as well as the fact that we simply never observe an earlier 
peak. In air, on the other hand, the Mie peaks had to be 
shifted ~n order to cause the curve to pass through the nuclea
tion event. The data for the air runs are not as clean cut as 
in Argon due to the difficulty of generating drops by homo
geneous nucleation in air. Also, while the fits at higher 
growing supersaturations are about as good in air as in Argon, 
there seems to be a systematic worsening, in air only, of the 
overall fit toward lower growing supersaturations. Further work 
on air is continuing. 

The analysis of error, especially in the data, is a 
difficult problem, and we have accepted Vietti and Schuster's 
values on this (1973a). They give about 4% on the evaluation 
of the theoretical curve. On the data, time resolution was 
within 5% on placement of the first few'data peaks and tends 
to decrease to .5% toward the end of the run. Uncertainty in 
pressure measurement led to negligible error. Placement of 
the maxima and minima from the theoretical curves, we feel, led 
to a negligible error, especially since this error was non
systematic. Estimated drop counts were small enough to neglect 
vapor depletion and heat addition. 
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CONCLUDING REMARKS 

The comparison between the theory herein presented and 
data is good, and indicates that the condensation and/or 
thermal accommodation coefficient should be small. We have 
chosen .022 and 1. for air and Argon. Work on air is continuing. 
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GROWTH MECHANISMS FOR 

URBAN AEROSOL PARTICLES 

S. L. Heisler and S. K. Friedlander 
California Institute of Technology 

Pasadena, California 

The general equation describing the dynamics of a cloud of small 
particles includes a term for growth from the continuous phase. This 
process is of controlling importance in the dynamics of urban aerosols and 
is closely related to the visibility problem. 

An experimental program has been initiated to determine the form of 
the growth law under conditions simulating the Los Angeles atmosphere. 
Experiments have been conducted in which hydrocarbons, sulfur dioxide 3 
and oxides of nitrogen were added to ambient Pasadena aerosol in a 60 m 
Teflon bag exposed to natural solar radiation. The ensuing photochemical 
reactions caused growth of the aerosol particles. An optical particle coun
ter was used to measure the size distributions of the aerosol as a function 
of time for particles larger than O. 30~m diameter. 

The changes in the size distributions with time were used to determine 
particle growth rates as a function of size and time. The results indicate 
that the gas-to-particle conversion process consists of the formation of 
supersaturated chemical species in the gas phase followed by condensation 
of these species on preexisting particles. In the condensation process, the 
variation of vapor pressure of the condensing species above the droplet 
with size (Kelvin relation) must be taken into account; this effect leads to 
sizes below which condensation does not occur. 

INTRODUCTION 

Reliable methods for relating the urban smog aerosol to its sources 
are needed for the control of visibility and of human exposure to trace 
metals, organic substances, sulfates and nitrates. Visibility reduction by 
light scattering and health effects by deposition of particles in the lungs are 
complex functions of the aerosol size distribution. It is necessary to be 
able to determine the manner in which the aerosol is modified by various 
processes. 

Particulate sources can be classified as either primary or secondary. 
Primary sources are those which emit particles directly into the atmos-
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phere. Secondary sources. are those which lead to the formation of par
ticulate material in the atmosphere through gas-to-particle conversion. 
Much of the organic material, sul1ates and nitrates in urban aerosols 
results from secondary processell and accounts for about one-half of the 
aerosol mass during periods of moderate to heavy smog in Los Angeles (1). 
It is the goal of this research to determine the manners in which the size 
distribution is affected by these secondary sources. 

AEROSOL DYNAMICS 

The dynamics of a cloud of small particles can be described by a 
partial integro-differential equation: 

on(d , r, t) 

--p--- + '\j. [(~ (r, t) + ~ (d »n(d , -;, t)] + J (I (d , r, t)n(d , r, t)] 
ot s P P O"p P P 

d 
= 'V.D(d )'Vn(d ,r, t) +! J p ~(d ~ d ,r, t)n(d ~ r, 

p PoP P P 
t)n(d, r,t)dd • -

p p 

CD 

ned , r, t)J R(d , d ~ r, t)n(d', r, t) dd' 
PoP P P P 

(1 ) 

n(dp , r, t) is the size distribution function and is defined such that dN, the 
number of particles per unit volume with sizes in the range dp to dp + dd 
o 0 b P 
IS glven y: 

dN(d , r, t) = ned , r, t)dd 
p P P 

(2 ) 

where dp is particle diameter, r is the position vector and t is the time. 
~(;, t) is the velocity of the suspending fluid and ~s(d ) is the particle 
settling velocity. I(dp , r, t) is the rate of change of ~article diameter by 
gas-to-particle conversion and growth of preexisting particles: 

dd 

P = r(d , r, t) 
dt p 

D(dp ) is the particle diffusion coefficient. P(dpi ' dpj) is the coagulation 
constant for particles of sizes dplo and dpJ

o so that 8 (d 0 d o)n(d 0 r t) 

(3 ) 

- Pl' PJ pI" 
n(dpj' r, t)ddpiddpj is the collision rate per unit voluIne ,2£ flUId between 

particles of Slzes dpi to ~i + ddpi and dpj to dpj + ddpj . dp is defined by 
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(4) 

Eq. (1) results from an analysis of the rate of change of the number 
of particles with sizes between dp and dn + ddp in an infinitesimal volume, 
as a result of convection, diffusion, sed'imentation, coagulation and gas -to 
-particle conversion. Differences between the velocities of the fluid and 
the particles due to inertial effects have not been considered. The second 
term on the left side of Eq. (1) results from convection and settling. The 
third term arises from growth through gas-to-particle conversion. The 
first term on the right side results from particle diffusion, and the second 
and third terms from coagulation. The growth term can be interpreted to 
include homogeneous nucleation provided suitable constraints are placed 
on B, the collision frequency function. Primary aerosol sources appear in 
the boundary conditions for the equation, while the secondary sources are 
in the equation itself. 

Ii the motion of the suspending fluid is turbulent, short time fluctu
ations must be taken into account. The Reynolds hypothesiS can be applied 
where ;, n and I are assumed to be sums of slowly and rapidly varying 
terms such that the averages of the rapidly varying terms vanish over 
short times 

... -=: -t, 
V = V + V 

n = n + n' (5 ) 

I = I + I' 

Turbulent coagulation is neglected, and {3 is not considered to be a fluctu
ating variable. The over-lines represent short time averages and the 
prime denote rapid fluctuations. The fluctuating term in I is due to vari
ations in gas phase concentrations. Eq. (5) can be substituted into (1) and 
the equation averaged over short times to give: 

on -: - - :::r;-; 0 -- 0 -;-; -
- +'V·(vtvs)n+'V.(v n )+~(In)+-d (In )='V'D'Vn 
at C7-'p 0 P (6) 

d d 
+tS PfHd

p
" d)n(d ')n(d)dd'+iS P8:d', d)n'(d ')n'(d)dd' 

o p p p PoP P P pp 

' ... '~ 
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'" 
- n I e (d " d ) ned ') dd ' 

0' P P P P 

'" 
(6 ) 

-J fJ (d , d ')n'(d )n'(d ')dd ' 
o P P P P P 

Various terms in Eq. (6) dominate in different particle size ranges. 
Convection and eddy diffusion are independent of particle size in the absence 
of inertial effects. Sedimentation is significant only for large particles 
(~ > IlJm). Gas to particle conversion causes an increase in particle 
size and, for certain forms of I, leads to accumulation of particles in 
certain size ranges. Brownian diffusion affects very small partides 
(d < O.llJIIl). Brownian coagulation causes a drop in the number of very 
srlkll particles and transfers them to larger sizes. However, the effect 
on these larger sizes is generally small since only a small amount of 
material is transferred. Coagulation by laminar shear can affect all sizes. 
Coa:gulation by differential sedimentation is important for coagulation 
between large particles of differing sizes and can, under certain circum
stances, sweep large numbers of smaller particles from the atmos-
phere. 

Visibility reduction by smog aerosols results primarily from light 
scattering by particles with diameters between 0.1 and 1. OlJm (2). Primary 
aerosols as they are emitted cannot account for the observed visibility 
reduction (1). Analysis of chemical composition shows that the products 
of secondary conversion processes account for a major portion of the 
aerosol on days of poor visibility (1, 4). This is consistent with the results 
of Husar, .!:! al. (3) who have shown that gas-to-particle conversion can 
account for the acc:umulation in the 0.1 to 1. OIJIIl size range. Hence par
ticle growth plays a key role in the dynamics of the urban aerosol; the 
purpose of this study was to evaluate growth mechanisms experimentally 
and theoretically. 

GROWTH LAWS 

The form of the growth law depends on the mechanism which controls 
the rate of transfer to the individual particles (4). If diffusion of gas phase 
material to the particles controls, the growth law is given by Fuchs and 
Sutugin (5) based on the work of Sahni (6): 

d 
dv' I Z1!DiM i !' 

= (p. - Pio) (7) 
dt p.RT 1 +.(,~ 1 

i 1 d 
P 
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where v is the particle volume, t is time, Di the diffusion coefficient of the 
ith species, Pi and Pio its partial pressure far from and near the particle, 
Pi its particulate phase density and ~ its molecular weight. R is the gas 
law constant, T the absolute temperature, and)., the mean free path in 
air. The factor .f., is given by: 

.f., = 
-1 

1. 333 + 0.71 Kn 

1 + Kn- l 
(8) 

where Kn = 2).,/dp is the Knudsen number. Equation (7) assumes that 
(1) the diffusion is a quasi-stationary process, so that the flux of material 
to the particle can be considered constant with time, (2) the concentration 
of diffusing molecules in the gas phase is small enough that collisions 
between diffusing molecules can be neglected and (3) the masses of the 
diffusing molecules are much less than those of the bulk phase (air) so 
that diffusing molecules assume the velocity distribution of the bulk phase 
molecules following collisions. The first two assumptions are probably 
valid in urban smog while the last is not. However, the problem for which 
the last assumption does not hold has not been solved. 

When the diffusing species is adsorbed or absorbed by the particles, 
Pio vanishes. When droplet curvature and solution composition have a 
significant effect on vapor pressure, the Gibbs-Duhem equation can be 
used to calculate the equilibrium partial pressure of the ith species over 
the solution droplet: 

= p . '>jx. exp(4a M./p.RTd" ) 
V111 11 P 

(9) 

where p . is the vapor pressure of the species, x. its particulate mole 
fraction~l a the surface tension of the particle and ')Ii is the activity coef
ficient of the species "in the particle defined such that ')Ii approaches one as 
xi approaches one. It is assumed that the gas phase is ideal. The growth 
rate is then given by: 

dv 
dt +.f.,~ 

d 
P 

[5. - ')I.x. exp( 40Mi )J 
1 1 1 ~ RTd 

Pi P 

(10) 

where 5i = Pi/Pvi is the saturation ratio for the ith species. If all the 
saturation ratios are near one and Yixi is independent of particle size, the 

'; .. 

/- "', 
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exponentials can be expanded and only the linear terms retained to give: 

where 

and 

dv 
dt 

1 
= 1 + .t2X 

dp 
2 * A.(d - d . ) 
-' 1 P pl 
i 

* d . = 4oM.lp.RT In(S.ly.x.) 
p1 11 111 

A. 
1 

= 21TDiMiPvi 'Y..x.S.lnS. 
p .RT 1 I I I 

1 

Equation (5) can be written as: 

where 

and 

* 

dv 
dt = 

d 

A 
1 +.(,~ 

d 
P 

* (d - d ) 
p P 

A = LA. 
I I 

i 

* 
I A.d*. 
i I pi 

= p 2. A. 
i I 

d is the critical ~Iize below which growth does not occur. p . 

(11) 

(12) 

(13 ) 

(14) 

(15) 

(16 ) 

H the rate of particle growth is limited by a chemical reaction which 
occurs on the surface of the particle, the growth law iii: 

dv 
dt 

(17) 
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where the factor Kl (t) is equal to the rate of production of particulate ma
terial per unit surface area and is assumed to be independent of size. 

Ii reactions occurring within the particle control the growth, the 
rate is: 

where KZ (t) is the rate of production of particulate material per unit 
particle volume and, like K

l
, is assumed to be independent of size. 

EXPERIMENTAL PROCEDURE 

(18) 

Experiments are being conducted to measure the growth rate as a 
function of particle size using a 60m3 bas constructed of 1 mil TeflonR 

sheets as a reaction vessel. The sheets are heat sealed together and the 
seams reenforced with mylar tape. TeflonR was chosen because of its 
transparency to ultra-violet radiation and its inert chemical nature; ozone 
losses to the walls are small. Experiments are conducted on the roof of 
the Keck Laboratory using natural solar radiation. 

In a typical experiment, atmospheric air with its ambient aerosol 
burden is introduced into the bag, and an organic vapor, NO, and NO

Z 
are 

added. In some cases, S02 is also added. Precautions are taken to assure 
adequate mixing of the additives with the air. J:'he quantity of NO added 
is sufficient to reduce the initial ozone concentration to zero. The bag is 
flushed with ambient air a minimum of three times before the introduction 
of the additives in order to remove residual products from previous ex
periments. Particle size distributions are measured as a function of time 
in the size range above O. 30J,.Lm particle diameter with a modified Climet • 
Instruments Model CI-201 optical particle counter in conjunction with a 
multichannel analyzer. Concentrations of NO, NOZ' SOZ and ozone are 
also monitored as well as total aerosol number concentration, light scat
tering and solar radiation. The size distribution measurements are made 
over a 100 to 150 sec time period. An additional 100 sec. is required 
between measurements for output of the data to a Teletype. R 

The Mie theory of light scattering in conjunction with monodisperse 
polystyrene latex spheres has been used to determine theoretical calibra
tions for the optical counter system for various particle refractive indices. 
The particles in the bag have been assumed to be spherical with an index 
of refraction of 1. 5 (2). 

',:'," 
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EXPERIMENTAL RESULTS 

To calculate particle growth rates, the following assumptions are 
made: (1) coagulation does not affect the number or size of particles 
measured by the optical particle counter (dp > 0.3I-4m), (Z) all particles 
of a given size grow at the same rate and (3) the growth rate is a mono-
tonic function of size. Calculations of coagulation rates based on Brownian 
diffusion and measured total number concentrations support the first assump
tion, and the experimental results are consistent with the second and third. 
Then, as a given size particle grows, the number concentration of larger 
particles will remain the same. Let NGT(d , t) be the number concen
tration of particles with diameters greater t~an or equal to d. If a particle 
of size d at t grows to d 1 at tl: p 

po 0 p 

(19) 

Hence, measurements of NGT at two different times can be used to calcu
late values of d I for various values of d po ' Particle growth rates as a 
fU!lction of sizePare then approximated by: 

dv .". 3 
dt = Mt (dpl 

3 
d ) 

po 
(ZO) 

where t:.t is the time between measurements. The value of the growth rate 
is assumed to be for the mean size d : 

p 

d = (d I + d )/Z 
p p po 

(Z 1 ) 

Three expe riments have been conducted. In each, I ppm of 1,7 -octa
diene, 0.33 ppm of NO 3.nd 0.33 ppm of NOZ were added. In one, F91, 0.05 
ppm of SOZ were also added. The times, initial and final total number con
centrations, light scattering coefficient (bscat) and maximum ozone concen
trations are listed in Table I. Local visibility is inversely proportional to 
bscat. Figure I shows NGT vs. d for various times in experiment F05. 

p 

Schuetzle, _~ al. (7) have identified difunctional organic compounds, 
such as adipic acid in smog aerosol. Such compounds result from the photo
chemical oxidation of diolefins or cyclic olefins. Octadiene was chosen as 
representative of such aerosol precursors. 

If the growth is described by either Equation (7) or by (14), both 
of which result from diffusion, dvldt (1 + .(,Kn) should be a linear func
tion of particle size. Values of dv/dt (1 + -t.Kn) from experiment F04 



561 

are shown in Figures 2 - 6. The lines in the figures are least- squares 
best fit straight lines to the data. The fits are seen to be good with 
positive intercepts on the particle size axis. Since Eq. (7) predicts 
that this intercept should be zero and Eq. (14) predicts a positive value, 
the results indicate that Eq. (14) can be used to describe the growth and 
that the growth is therefore due to condensation on the particles and that the 
variation of vapor above the droplet with radius must be taken into account. 

-5 -4 2/ The best-fit values of A varied from 3.89 x 10 to 1. 03 x 10 IJm 
sec in experiment F04 with an average of 7. 05*x 10-5IJm2/sec and a stan
dard deviation of 1. 97 x 10- 5• The values of dp varied from 0.259 to 
O. 274IJm with an average of O. 268IJm and a standard deviation of O. 005!JDl. 
For experiment F05, the values of A varied from 4.83 x 10-5 to 1.48 
x 10-4IJm2/sec, with an average of 8.25 x 10- 5 and a standard deviation of 
3.31 x 10-5 . d; varied from 0.270 to O. 3l0IJm with an average and stan
dard deviation of 0.285 and O. Ollj.lm. For experiment F9l, A varied from 
3.84 x 10-5 to 1. 44 x 1 0-~m2 / sec with an average and standard deviation 
of 9.78 x 10-5 and 2. 95 x IO-5j.lm2 /sec. d* varied from 0.257 to 0.4231Jm 
with an average and standard deviation of (f. 281 j.lm and O. 0561Jffi. The 
uncertainties in the individual estimates of A and d~ were on the order of 
50/0 and 8%, respectively, for all three experiments. 

A series of calculations have been carried out to see whether Eq. (14) 
can predict the changes in the measured size distributions. The calculations 
consisted of using a measured size distribution and applying the fitted 
growth laws over the intervening time period to a later measured distri
bution. The results of such calculations are shown in Figures 7 and 8. 
Fig. 7 resulted from using the third measured distribution in experiment 
F05 as an initial condition and applying the growth law over the 460 sec. to 
the fourth measured distribution. Figure 8 shows the results of using the 
first measured distribution in F05 as an initial condition and integrating 
over 2 7 I 9 sec. to the time of the last measured distribution. The func
tion plotted is dV /d log (d ) where V is total aerosol volume concentration 
and the logarithm is to bfse "10. The agreement is seen to be good in 
Fig. 7. Similar agreement between predicted and measured distributions 
were found for all other calculations between consecutively measured 
distributions. The agreement in Fig. 8 is not as good, small deviations 
having propogated over the long integration time involved. 

CONC LUSIONS 

Three experiments have been conducted in which the growth of 
aerosols due to gas-to-particle conversion was studied. The system used 
was naturally irradiated, ambient, unfiltered urban air to which 1,7-
octadiene, NO, N02 and, in one case, SOz were added. The growth rates 
of the particles larger than O. 3IJm diameter were measured as functions 

I.·) ," 
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of time and particle size. The observed variations of growth rate with 
particle size can be described by a growth law resulting from a multi
component supersa.turated vapor phase, where the supersaturations are 
on the order of a few percent and the particulate chemical composition 
is fairly constant with size. The variation of the vapor pressure of the 
condensing substances above the particles with radius must be taken into 
account. Critical diameters on the order of O. 28!Jm were found. 
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Table I 

Summary of Experimental Results 

-3 4 
Experiment Date Time Total Number x 10 b scat x 10 Maximum 

(PDT) (cm- 3 ) (m-l) 03 (ppm) 
Initial Maximum Initial Maximum 

F04 6/Zl/74 1050-13Z0 13.8 86. I 3.Z Z4.7 1. 16 

F05 6/Z5/74 1057-1334 18.5 97.5 Z.Z >Z7(off scale) 1. 39 

F91 6/Z6/74 lZZ0-1438 ZZ.5 Z,19 3.5 >Z7 (off scale) 1. 38 

Initial gas concentrations: 1 ppm 1, 7-octadiene, 0.33 ppm NO, 0.33 ppm NO
Z

• F91 - 0.05 ppm SOZ. 

F04 and F05 no SOZ. Temperatures ranged from 35 to 45 0 C in all experiments and were not constant 

due to variable convective cooling of the bag by winds. Relative humidities ranged from 15 to 30% as 

temperature varied. 
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101 Fig. 1. Number concentration of 
particles with diameters greater 
or equal to a given size, NGT, vs • 

10° 0.2 

• particle diameter, DP, f!or various 
times in experiment FOS. Each 
curve is from a single size distri
bution measurement. For a given 
size, NGT increased with time. The 
time between measurements varied 
from 220 to 270 sec. 
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Fig. 2. Particle growth rates 
calculated from consecutive size 
distributions in experiment F04. 
The values shown are dv/dt 
(1 + tKn). The linear torm is 
predicted by equation (7) pre
dicting a zero dp intercept and 
equation (14) predicting a posi
tive d intercept. The error bars 
ref1ec~ the statistieal uncertain
ties due to counting in measuring 
the size distributions. The num
bers in the upper left corner are 
the pairs of size distributions 
used in the calculations. 
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Fig. 3. Particle growth rates 
calculated from consecutive size 
distributions in experiment F04. 
The values shown are dv/dt 
(1 + tKn). The linel\r fQri\ is 
predicted by equation (7) pre
dicting a zero dp intercept and 
equation (14) predicting a posi
tive d intercept. The error bars 
reflec~ the statistical uncertain
ties due to counting in measuring 
the size distributions. The num
bers in the upper left corner are 
the pairs of size distributions 
used in the calculations. 
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Fig. 4. Particle growth rates 
calculated from consecutive size 
distributions in experiment F04. 
The values shown are dv/dt 
(1 + tKn). The linear form is 
predicted by equation (7) pre
dicting a zero d intercept and 
equation (14) pr~dicting a posi
tive d intercept. The error bars 
reflec~ the statistical uncertain
ties due to counting in measuring 
the size distributions. The num
bers in the upper left corner are 
the pairs of size distributions 
used in the calculat1Qn~, 
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Fig. 5. Particle growth Tates 
calculated-from consecutive size 
distributions in experiment F04. 
The values shown are dv/dt 
(1 + lIn). The linear form is 
predicted by equation (7) pre
dicting a zero dp intercept and 
equation (14) predicting a poai
tive dp intercept. The error bars 
reflect the statistical uncertain
ties due to counting in measuring 
the size distributions. The num
bers in the upper left corner are 
the pairs of size distributions 
used in the calculations. 
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Fig. 6. Particle growth rates 
calculated from consecutive size 
distributions in experiment F04. 
The values shown are dv/dt 
(1 + J Kn) • The linear form is 
predicted by equation(7) pre
dicting a zero dp intercept and 
equation (14) predicting a posi
tived intercept. The error bars 
ref1ec~ the statistical uncertain
ties due to counting in measuring 
the size distributions. The num
bers in the upper left corner are 
the pairs of size distributions 
used in the calculations. 
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volume distributions in experiment F05. 
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MICROSTRUCTURE, COMPOSITION AND DYNAMICAL 
EVOLUTION OF SCATTERING PARTICULATES 

DETERMINED FROM OPTICAL DATA 

Alain L. Fymat 
Jet Propulsion Laboratory, 

California Institute of Technology 
Pasadena, California 91103 

ABSTRACT 

A method is desc ribed for determining the 
microstructure and composition of scattering 
particulates from optical data. In a first step, 
angular measurements of light scattered in a for
ward cone of approximate half-width 7.5 0 are per .. 
formed with an angular resolution of 15 min, or finer, 
at a near IR wavelength longer than approximately 
O. "I iJ.m but not exceeding the expected minimum 
pal-ticle radius. Data obtained in this manner are 
used to reconstruct the particle size distribution 
beyond 0.7 iJ.m from a closed form, analytical 
inverse solution to the angular diffraction integral 
generalized to a polydispersion. This solution is 
euentially independent of the refractive index, and 
is unconstrained relatively to any analytical distribu
tion model. It applies to any arbitrary mixture of j 
different species of particles, each species eventually 
exhibiting a different refractive index, imbedded in 
i different species of gases. An effective gaseous 
depolarization factor can be determined separately 
from the measurement at a single near-forward 
scattering angle of the degree of polarization of the 
diffracted light. The effect of gases on light scat·· 
tered by larger particles can thus be effectively 
eliminated. In a second step, the identical measure
ment are carried out at a set of additional wavelengths 
substantially different from the first one. With the 
size distribution determined in the first step, the 
latter data are employed to retrieve the complex 
refractive index at these other wavelengths using a 
nonlinear minimization search routine we developed 
earlier. The method can be implemented for real
time operation, thus also providing a means for 
monitoring the dynamical evolution of the particle!;. 

I. INTRODUCTION 

Clouds, radiation and dynamics form the closed system which 
determines our weather and climate. Each of these three elements 
is affected, either directly or indirectly, by the scattering 
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particulates present in the atmosphere in the form of aerosols 
(natural and anthropogenic), hydrosols (fog, sea sprays) and larger 
particles (water drops and ice crystals). The effect of these partic
ulates depends on their physical characteristics (geometrical shape, 
size and distribution, complex refractive index), and on their ' 
residence time in the atmosphere. Great interest is therefore 
attached to the determination of these characteristics and this resi
dence time. Current concern about the quality of our environment 
has added tremendously to this interest. Several experimental and 
theoretical techniques dealing with this problem are therefore being 
revived, improved or newly developed. These techniques transcend 
the field of meteorology a:nd may be of direct applicability in other 
fields of science and engineering. 

Conventional experimental techniques are based on in situ 
sampling during which the particles are thermally precipitated, 
impacted or otherwise mechanically collected. Analysis of their 
sizes is effected in the bulk range (0.01 - 1,000 flm) covering aero
sols, non-precipitating clouds and some rain drops. As is well known, 
however, several problems are associated with these techniques. 
While it is not our purpose to discuss here these problems, let us at 
least indicate that, because the medium is disturbed by the sampling 
process, it is generally thought that the sample so obtained is not 
representative. Imaging techniques are also being developed. How
ever, because the measurements are still performed within the 
medium, it is difficult to assess whether the problem just indicated 
has been overcome and to what extent. Remote sensing techniques, 
on the other hand, can by definition overcome this fundamental prob
lem. They are, however, encumbered with analytical and numerical 
difficulties. These are discussed systematically elsewhere [1]. In 
the latter techniques, the main efforts have concentrated on only the 
determination of the size distribution of spherical particles of known' 
composition. In this paper, we wish to present a method we have 
recently developed for retrieving the size distribution as well as the 
refractive index and its spectrum. This method involves a two-step 
process. The first step provides the size distribution independently 
of the refractive index, a feature of particular interest in the study 
of drops and bubbles. Using this knowledge, the second step of 
the process then yields the refractive index spectrum. 

II. SOME BACKGROUND REMARKS 

Consider an arbitrary mixture of gases and particulates, either 
contained in a laboratory cell or freely suspended in air or in weight
lessness. This medium is illuminated by shortwave radiation (solar 
light or artificial light source) of known brightness and state of polar
ization. On interaction, this incident light is partly absorbed and 
scattered by both gases and particles in the medium. The radiation 
emerging after interaction can be conveniently separated, both 
analytically and experimentally, into a direct and a diffuse compo
nent. The former component is that part of the incident radiation 
that has been reduced by absorption and first-order scattering 
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processes. It propagates in the exact forward direction and is in the 
same state of polarization as the incoming light. The latter compo
nent, the remaining fraction of the incident light, has suffered the 
same two processes of absorption and scattering but has, in counter
part, been augmented by second- and higher-order scattering (i. e., 
virtual medium emission) into any viewing direction of interest. It 
propagates in all directions between and including the exact forward 
and the exact backward directions. With the exception of the exact 
forward direction, it is generally in a different state of polarization 
than the light source. It s intensity in this forward direction is negli
gible compared to that of the direct beam but, nevertheless, amounts 
to half the total scattered light. the remaining half being distributed 
among all otht~r directions. 

Both the direct and the diffuse light beams contain information 
about the absorbing and scattering medium. While it is difficult to 
quantify the relative information content of these two beams, it is 
immediately clear that the diffuse beam affords many more possi
bilities for retrieving this information than the direct beam. To be 
sure, the diffuse beam will be described by four observables, 
so called Stokes's parameters (I, Q, U, V) which give, respectively, 
the light intensity, its degree of polarization, the orientation of its 
plane of polarization, and the ellipticity of its polarization ellipse. 
Each observable exhibits variations with both angle and frequency. 
On the other hand, the direct beam, characterized only by ita inten
sity, presents solely frequency variations. This statement, however, 
should not be construed to imply that the direct beam is in any way 
of lesser importance, or contains less information than the diffuse 
beam. Only a detailed and systematic investigation of both situa
tions will provide a reasonable conclusion as to their relative merits 
and disadvantages. A concerted use of both beams, when experi
mentally feasible, may indeed provide a powerful approach since 
the two determinations of particle parameters result~ng from use of 
the two beams must necessarily be consistent. 

The basic problem, in any event, is the following: given, with 
all required details, the lights incident on, and emerging from, the 
medium undel' consideration, determine the medium composition 
and microstructure. More specifically, determine for each gas 
present its absorption cross-section, refractive index, anisotropy 
parameter (for nonspherical atoms and molecules), and number 
density. (The scattering cross -section is expressed in terms of 
the latter three parameters by the well-known Rayleigh-Cabannes 
formula [2]). Likewise, for each particulate, determine its shape, 
number density, size distribution, and refractive index (both real and 
imaginary palts). Lastly, determine the medium total optical thick
ness and, if the medium is bounded by a reflecting surface, auch as 
for the Earth's atmosphere, also determine the surface character
istics. This is a formidable task! Excluding for the moment the 
surface reflection, the number of unknowns is 5(N + M) + 1 in the 
case of N gases and M patticulates, assuming that each particulate 
type can be described by a single characteristic dimension. If the 
detailed size distribution must be determined, this number becomes 
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5N + (4 + P) M + 1, where P is the number of parameters describing 
adequately the distribution. Although analytical distributions may 
not, in many cases, provide adequate representations, let us at least 
mention that for the most widely used distributions in meteorology, 
P = 1 (power, exponential and lognormal distributions) or P = 2 
(modified gamma distribution). The spatial variations of these 
unknowns must also be determined. The corresponding formulation, 
considering only variations in the vertical, has been provided in 
our earlier work [1] for the direct beam, and the diffuse beam either 
reflected by, or transmitted through, the medium after an arbitrary 
number of scattering events. If the surface, composed of Q different 
materials, is assimilated to an optically infinite atmosphere, the 
above cited numbers of unknowns become 5(N + M + Q) + 1 and 
5N + (4 + P)(M + Q) + 1, respectively. No solution has yet been 
obtained to this general problem. In the meantime, workers in the 
field are concentrating their efforts on specialized cases in the hope 
that the experience and understanding thus acquired will lend a helpful 
hand for tackling the realistic problem. It is clear from the start that 
reductions in the problem dimensionality, when justified by either a 
theoretical analysis or the experimental conditions will be critical 
to the success of the enterprise. If the actual inhomogeneous medium 
exhibiting spatial variations can be mimicked by an equivalent 
homogeneous medium with no such variations, that is if two such 
media can be found that result in the same emergent radiation field, 
then, obviously, the true physical parameters of the particles cannot 
be determined. Instead, l1effectivel1 parameters will be obtained which 
may depart from the true ones. Such effective parameters may never
theless be useful for a study, not of the properties, but of the effects 
of the particulates on radiation field observables. We have provided 
[ l] a critical, although not exhaustive, analysis of the various methods 
thus developed. In this paper, we will limit ourselves to that method 
developed by the author that seems more appropriate to the purposes 
of the present volume. Additional material can be found in our earlier 
publications [1, 3, 4]. 

Ill. ST A TEMENT OF PROBLEM 

The following problem will be considered: unpolarized light of 
wavelength, >., forming a parallel beam of intensity, 10' is incident 
along the direction 9 0 = cos- 1 I-LO on a plane-parallel stratified medium 
consisting of an arbitrary mixture of i different species of gases and 
j different species of partic.ulates. The direction of incidence is 
referred to the normal to the plane of stratification of the medium, 
and the particles, which may present a distribution in their refractive 
indices, are assumed to be homogeneous, spherical, and their sizes 
described by some arbitrary distribution, n(r), where r is the particle 
radius. It must be noted that this distribution is not restricted to any 
particular analytical model and may describe a monodispersion or any 
arbitrary polydispersion having one or several modes. 

The total optical thickness, T1, of the medium at wavelength >. 
will be assumed to be small, T1 « 1, so that only single scattering 
need be studied. No reflecting boundary will be considered. 
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The diffuse light transmitted along the direction e = cos -1 f.l., 
referred as earlier to the normal to the plane of stratification, is 
polarized with components I:: II and Q E 12, only. They are [1]: 

where 

w is the single scattering albedo: 

rr 
E 

and Pk1 are elements of the scattering phase-matrix: 

m, n = 1 to 4. 

(2) 

(3) 

(4) 

In deriving Eq. (1) it was assumed that the medium is optically 
homogeneous, i. e., wand p do not vary in the medium. This is a 
reasonable assumption in view of the hypothesis !l «1. However, 
if the medium were inhomogeneous, then, wand P would apply to 
an equivalent homogeneous medium that yields the same transmitted 
light, as discussed earlier. The quantity m(x') is the medium com
plex refractive index at wavelength x,; rr and ex are volume scattering 
and absorption coefficients, respectively, with subscripts g for gases 
and p for particles; and E is a volume extinction coefficient. The 
superscripts i and j denote, respectively, summations over a1l i 
species of gases and j species of particles, i. e. , 
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l. = i or j 

(Einstein's convention). In Eq. (3), o-j and a
j 

must be interpreted 
as applying to a polydispersion, i. e., p p 

y - 1" y(r) n(r) dr, (5 ) 

where y(r) is for a single particle radius. Lastly, the matrices Pg 
and Pp are the Rayleigh-Cabannes [ 2) and the Mie [5] phase-matrlces, 
respet;tively. For any m(>") and n(r), Ep can be computed from Mie' s 
theory. 

Inserting Eqs. (3), (4) and (5) in Eq. (1), the latter equation 
becomes: 

I (~) -

Now, for any arbitrary e, we have: 

i 3 
Fll,g = 4" 

Fi "'"' sin" e (Yi - 1) 
21, g = ~ ~ 1 + 2y, 

, 1 
1 

n(r) dr. (6) 

(7) 
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where 'Vi = p./(2 - Pi)' Pi being the depolarization factor of the ith gas 
species (e. g:, Pn = 0 for isotropic molecules, Pn = 0.031 for air), 
and 

F j 1 L {ls2,jI2 + IS I ,jI2} = 
2k2 11, P 

(8) 

Fj 1 L {ls2,jIZ-IS1,jIZ} = 
2k

Z 21, P 

where k = 2rr/).. is the wavenumber, and Sk j ;: Sk .(e,)..; r), k = 1,2, 
are Mie functions for a single particle of the jth ' J species and of 
radius r. For given).. and r, the latter functions will depend only on 
the refractive index of the jth particle species. However, for forward 
scattering (e = 0°), they reduce to (Kirchkoff approximation to 
Fraunhoffer diffraction; see, for example, Ref. 5): 

- S2 . = 
-oJ 

kr J 1 (x) 
, x = kr sin e , 

sin e (9) 

where J 1 is Bessel function of the first kind and order unity. Equa
tion (9) shows that Sk j is remarkably independent of the refractive 
index, i. e. ' 

(10) 

It follows in thi.s case that Eqs. (8) reduce to 

= 

(llY 

Fj = 0 • 
Zl,p 
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With this result, Eqs. (6) become: 

l
CIO 

2 2 o r J 1 (x) nCr) dr , 

= 0 • 

Under the present conditions of single scattering, we also have by 
expanding the exponentials in Eq. (2); 

Tl E 

f = 4fl = 4 cos e 

(12) 

(13) 

and, when this last result is substituted in Eqs. (12), we get the final 
expressions: 

Fi ] 
11, g 

2 2 
r J 1 (x) nCr) dr , (14) 

and 

Z2(e, >") - 4 cos e ( ~~) - F~l, g = 0 • (15) 

These two expressions provide the required formulation of the prob
lem of interest. Equation (14) is the angular diffraction integral 
generalized to the case of a po1ydispersion of scattering particles. 
Equation (15) can be used to infer information on gaseous depolariza
tion [see Eqs. (7)]. Our main problem will now lie in the following 
two-step procedure: 
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1. Assuming F\ 1 g is known or can be determined separately, 
to invert Eq. '(1':1:) so as to reconstruct the size distribu
tion n(r). 

z. Using step No'. 1, to infer from Mie' s theory the only 
remaining unknown, namely the complex refractive index, 
and its spectrum. 

The exact manner in which these two steps are carried out 
explicitly is described in the following sections. 

".Iv. DETERMINATION OF SIZE DISTRIBUTION 

Consider again Eq. (14). The left-hand side of this equation is 
a measured quantity which must be used to reconstruct the size dis
tribution n(r). The ratio (11110) is directly provided by angular 
measurements of light (radiance) scattered in near forward directions 
contained within a narroW cone whose half-width will later be pre
scribed. The quantity Fl1 is assumed to be ei1J.1er known a priori 
or simultaneously measura'b'ie. For example, if '( is an "effective" 
paramete,! de~cribi~ the com~ined effect of all gaseous species 
present, '( = p/(2 - p), where p is an effective depolarization factor 
for the assembly of gases, or in the simple case of i = 1 (single gas 
species), then, :E:qs. (7) become: 

where Fk1 are effective values of Fkl • A simultaneous mea-
surement orthe degree of polarization ot~orward1y scattered light in 
any directio~ e ~ 0° will provide the quantity F21, g' that is -::; and, 
hence, also FlI, g' With the above expressions, the quantlty Z1 
becomes: 

Z 1 = 1 
j ! 4 cos e (I _ I ) _ 1. 1 + 'T I 

10 1 2 2 1 + 2'{ , 

(17) 

which is obtained immediately for any given cone angle e, measured 
values of (1/10) and (IZ/IO)' and depolarization factor 'T' 
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It has been Shown) 6] that Eq. (14) with Jv substituted in place 
of J 1 and v = 1/2, 1, 3 2 applies to a whole class of scattering 
particles: Rayleigh-Gans particles, Fraunhoffer particles, and 
those particles covering the intermediate cases between Rayleigh
Gans and anomalous diffraction [ see Ref. 5 for a description of these 
various particles]. With this substitution in mind, the following will 
cover all these cases. Using the Bateman-Titchmarsh formula 
[7,8]. Eq. (14) can be inverted analytically [3,4,6] to yield the 
closed form solution: 

nCr) 
21Tk 

= - -2-
r 

d 
J 1 (x) Y 1 (x) x d(sin e) 

(18) 

where Y1 is a Bessel function of the second kind of order unity. For 
the class above listed of particles, Y v should be substituted in place 
of this last function. It must be noted that the re suIt in Eq. (18) 
makes no assumption regarding the form of nCr); in particular, it does 
not assume, as is generally done, that nCr) follows any of the analyti
cal distributions derived empirically in the literature. Thus, it is' 
emphasized, nCr) is unbiased and can be any distribution: isolated 
spike (monodispersion), unimodal, polymodal. For the restricted 
case of a single species of particles and no gases present, the corre
sponding result to Eq. (18) is quoted in the Russian literature [see, 
e. g., Ref. 9], but no explicit demonstration of it could be found. 

From Titchmarsh' s conditions [8], it follows that Eq. (18) is 
valid for v ~ 0 if k 2 r 2n(r) is integrable over (0,00). This will always 
be true since physical distributions always decay, and vanish beyond 
a certain maximal radius value. [The validity for -1/2 < v < 0 
requires that (kr)2vt2 nCr) be integrable over (0,6), 6 < 00. For 
v = ± 1/2. Equation (18) reduces to Fourier's sine formula.] The 
solution nCr) given is exactly true for the function ZI defined by 
Eq. (14). In reality, however, e must remain contained within a 
narrow cone of angles; in any event, it cannot exceed 180°. Hence, 
it cannot become unbounded as implied by the above solution, and 
it therefore becomes conceivable that the distribution nCr) may not 
be reproduced exactly or, in some extreme cases, not at all. 

We have performed a considerable amount of numerical experi
ments aimed at assessing the effects of this limitation, and at delimit
ing the domain of applicability of the solution. Some results of the 
study have been discussed elsewhere [3]. Here, we should like to 
present some additional new results which should prove to be helpful 
in the system design of a particle size spectrometer based on the 
method. 

/ '\ 
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The "measu.rements", Zl(9, A), were generated in the computer 
from Eq. (14) using a number of different forms of n(r): monodis
persions, and polymodal distributions constructed from a· linear com
bination of a number of expressions like the modified gamma distrib
ution [101: 

where 

n(r) 
cr - br Y = a l' e 

Nyb 6 
a = r(6) 6 = cr + 1 

Y 

(19) 

N is the number density of particles, b is related to the mode radius 
(maximum concentration size), r c , of the distribution: 

b = 

and cr and yare constants whose values, as well as those of Nand b, 
depend on the type of cloud or haze studied. For simplicity, we shall 
present here some of the results for a = b = Y = 1 and various cr and ). 
values. Typical CPU times were approximately 5 sec per case 
studied. 

A. Effect of QE.erating Wavelength 

The effect of the initial wavelength A = ).1 selected for this first 
part of the method is illustrated in Fig. 1 which shows a true plot of 
particle size distribution, labeled "n(TRUE)", for comparison with 
distribution curves determined with a wavelength of 0.05 flm, O. 1 flm 
and 1.0 .... m. The ordinate scales on the left and on the right apply 
respectively to the solid-line and dashed-line curves. Clearly, the 
curves for). = 0.05 flm and), = 0.1 flm are absurd and must be dis
carded for the present case where the minimum radius is rO = 1 f.Lm. 
On the other hand, the curve for A :: 1 .... m is excellent in locating 
accurately the position of the mode radius and in reconstructing the 
entire distribution except in the region between 1 and 2 flm where a 
small negative tail has developed. This tail, which is related to an 
imrroper selection of the smallest opening of the forward light cone 
[9 , can be "regularized" for all practical purposes. The result of 
this regularization for the case under study is illustrated by the dotted 
curve. We have determined that "1 and rO are intimately connected 
by the relation: 
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O. 7 f.Lm ~ }..1 ~ r 0 • (20) 

In other words, we must operate with near IR wavelengths which must 
be approximately equal to or smaller than, the expected minimum 
radius. Alternatively, the method will not be able to sample particle 
sizes smaller than approximately 0.7 .... m. 

5r----,-----.-----r-----r----,-----~----r_--_,----_,----_r----~ 

z· 3 
o 
;::: 
::> 
'" .. ... 
'" o 2 ... 
N 
Vi 

ro= IJLm 

2595 .. 50 min. 
9!!.= 2 min. 

50 

040 !a 
N 
m 
C 
Vi 

30; 
S 
(5 
.Z 

20 ~ 

10 

~~~ __ ~--__ ~--~----~~~~~----~--~----~--~o 
11 13 15 23 

PARTICLE RADIUS. r(um) 

TAIL OF ). = I ~m REGULARIZED 

Fig. 1. Effect of Operating Wavelength 

B. Effect of Angular Range 

This effect is illustrated in Fig. 2 whiCh shows a set of curves 
reconstructed from data obtained within the angular ranges of 100 min, 
200 min, 300 min, 450 min, 500 min and 750 min. The curve for 
100 min is clearly absurd. The range of 200 min is not much better 
although the mode radius is located approximately correctly (its mag
nitude however is substantially underestimated by approximately 25%), 
and the sizes beyond 9 f.Lm are sampled correctly. The range of 300 
min is close to being acceptable, and may be for some applications, 
particularly if the tail at the smallest sizes is regularized. At a range 
of 500 min, the result coincides with the true curve except in the 
region where n(r) < 0.5 which is the only region where the curve 
labeled "emax = 500 min" departs from the true curve, and even then 
only slightly. The results for emax = 450 min would be even better 
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than those at 500 min. Further departures from this optimum result 
in progressive degradation as shown by the curve at 750 min. Note 
that the range is here indicated by a positive maximum angle, 8 Iflax. 
In practice, one would want to scan between + 8 max and - 8 max ln 
order to detect inhomogeneities in the scattering medium. 

5.-.---.---~r-·---.-----r----'-----~----r---~-----,-----' 

::s 
c 

z· 3 
o 
;:: 
::l 

'" .. .... 
5 2 
w 
N 
V; 

8 = 750 min. max 

11 13 15 17 

PART1CUl RADIUS, r( I'm) 

Fig. 2. Effect of Angular Range 

C. Effect of Angular Resolution 

'0" 3Jl-m 
A8= 2 min. 

~ = 1 I'm 

It is illustrated in Fig. 3 for various values of the angular 
resolution: ~8 = 10 min, 15 min, 25 min, 30 min, 45 min and 75 

23 

min. At all these resolutions, the mode radius is always accurately 
located. The curve for 75 min is clearly unsatisfactory, while for 
progressively finer resolutions the corresponding curves are con
stantly improved. This graph illustrates an important point regarding 
the uniquenes s of the solution. It is seen that as ~e becomes smalle r, 
there is uniform convergence to the true curve, and the solution is 
unique and identical to the true one only if the resolution is very 
small. Theoretically, ~e should be infinitesimally small. In practice, 
however, because of inherent noise in both experimental data and 
computations it is only necessary that ~e be approximately less 
than 15 min. Little improvement would be achieved by using smaller 
~e' s. 
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V. DETERMINATION OF COMPLEX REFRACTIVE 
INDEX SPECTRUM 

23 

The second part of the method will now be described. The 
selection of the first wavelength lI.l according to Eq. (20) has enabled 
us to work within the Fraunhoffer approximation to scattering theory 
and to retrieve the particle size distribution, independent of the 
refractive index, through a closed form analytical solution of the 
angular diffraction integral for a scattering polydispersion. On 
selecting a second wavelength >..Z departing substantially from >"1, 
(this is clearly required in order that the data obtained separately 
with these two wavelengths be independent), the above approximation 
can no longer be used. Instead, one is forced to resort to the more 
general Mie l s theory. This is a rather interesting situation for, then, 
the size distribution determined from >"1 (which is evidently 
wavelength-independent) can be substituted in Mie l s solution leaving 
only m(>" = >..Z), the complex refractive index at the second wavelength, 
as the only remaining unknown. The way in which m(>..Z) is retrieved 
will now be discussed. 

Let Ii :; I (ei; m r • mi) denote the forwardly scattered intensities 
computed from Mie l s solution at >"Z with the known n(r). The forward 
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angle e, taking the values e·, is the independent variable. The 
dependent variables are mr l.nd rIl;i' that is respectively the real and 
imaginary parts of the refractive mdex. The dependence of mr and 
mi on X2 is implicit. The measurements obtained by repeating with 
the second wavelength X2 the procedure described in the previous 
section, according to the presc~:ibe~ optimal angular range and resolu
tion, will similarly be denoted Ii :: I(ei ; m r , mil. The purpose would 
be to solve the equation 

(21 ) 

where Ei is an upper bound for the accuracy with which we require the 
computations Ii to approximate the measurements Ii; ~j is fixed in 
particular from values of the noise in both the data and the computa
tions since the evaluation of Ij, will involve the use of finite word 
length arithmetic and quadrature rules of finite accuracy. We then 
define the function (independent of e) 

S(m , m.) = 
r 3. 

L (Ii -~~i)2 
. d. I. 
111 

where di is a statistical factor related to the distributions of the 
measurements within the observed angular interval, and to their 
relative weights. We say that an "inverse solution" of the original 
problem, i. e., a set of "best" values of the unknown parameters, 

(22) 

mr and mi. would have been obtained, if the weighted sum of squares 
of relative deviations appearing on the right-hand side of Eq. (22) is 
a minimum, say 

S . (m , m.) • mln r 1 (23) 

The function S can be considered as the equation of a curved surface, 
the minimum of which (if it exists) it is required to find. If the 
problem is well-conditioned and possesses a unique solution, then, 
the surface S will be smooth and will exhibit a unique minimum. The 
pair of values of mr and ~ cort'esponding to this minimum, or in 
other words the coordinates of the minimum in the parameter space 
of dimensions rnr and mi, represents "the solution". 

We have developed a nonlinear search routine (called Minimiza
tion Search Method) for accomplishing such minimizations [11, 12 J. 
The algorithm is able to find the minimum of any arbitrary function, 
not necessarily S-functions like in Eq. (22). It can handle any 
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arbitrary number of unknowns, and is independent of the physical or 
mathematical assumptions made in evaluating the quantities Ii' Com
plete details as well as flow charts can be found in our earlier pub
lished work. 

Sample results for a water (fair weather cumulus) cloud and a 
sulphuric acid cloud are illustrated in Table 1. The parameters of the 
size distributi'ons for these two cases are respectively: (i) Cl' = 6, 
'{ = 1, b = 1.5; and (ii) Cl' = 9.5, '{ = 1.0, b = 12.5. 

Table 1. Illustrating applications of the Minimization 
Search Method in retrieving complex refractive 
index values of clouds. 

Real Part, mr Imaginary part" m i Maximal 
CPU 

True Computed True Computed Time 

H20 cloud 1.290 1. 290 0.000304 0.00029 48 sec 
(}..2 = 2.27 IJ.m) 

H2S04 cloud 1.440 1.440 0.0001 0.0001 68 sec 
(}..2 = 0.55 IJ.m) 

The total CPU times vary with the type of cloud considered and with 
the initial guess used for initiating the search algorithm. For the 
present cases, their maximal values are indicated in the Table. 

The same procedure can of course be applied to a set of second 
wavelengths. In this manner the spectrum of the refractive index 
could be obtained. 

VI. DISCUSSION AND CONCLUSIONS 

We have described a two- step approach for retrieving simul
taneously and separately the size distribution, and the complex refrac
tive index and its spectrum of atmospheric particulates from angular 
measurements of light they scatter in a narrow forward cone. In the 
first step, the problem of determining the size distribution only was 
considered within the framework of Fraunhoffer diffraction theory. 
The same treatment holds however in the Rayleigh-Gans approxima
tion as well as in all intermediary cases between this approximation 
and anomalous diffraction. In the Fraunhoffer case, we have limited 
our study to homogeneous spheres. We are not able to distinguish 
this case from that of homogeneous ellipsoids since the corresponding 
diffraction patterns differ only by a constant factor [13]. These 
particles can however be distinguished from ice needles. The same 

/ '\ 
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situation exists in the Rayleigh-Gans case. The interest of working in 
the forward scattering region is multiple: (i) independence from the 
particle refractive index (Babinet 1 s principle). This results in a 
particularly interesting situation where size distribution can be deter
mined without regard to refractive index; (ii) availability of a high 
level of scattered energy, half of the total (Huygens 1 principle), which 
can be separated out from the much weaker energy reflected by, and 
refracted in, the particles; (iii) independence from polarization which 
thus does not affect the diffracted field since the incident polarization 
state persists after diffraction. Such particles, in a number j of 
species, each species having eventually a different refractive index, 
but a1l species together following a certain size distribution, can be 
imbedded in a host gaseous mixture consisting of i different spec:ies 
of gases. The optical thickness of this medium was assumed to be 
sufficiently small in order that single scattering effects only be con
sidered. For coherent light, Zuev et a1 (14] have determined that 
this thickness can take values up to approximately 25. For incoherent 
light, van de Hulst [5] has stated that it should not exceed O. 1; for 
larger values up to 0.3 a correction may be needed for double scatter
ing while for still larger values of the thickness the complete multiple 
scattering must be considered. This statement was taken too literally 
in the past. However, detailed computations by Weinman et a1 (15] 
for a mixture of volcanic dust (thickness = 0.5) and gases (thickness 
= 0.145) have shown that near the zenith (tJ. = tJ.0 = 0.966), the con
tribution of multiple scattering to the observed tJ:ansmitted light is 
less than approximately 50/0 for the scattering angles of interest here 
($ 80

) ! A similar conclusion has been re ac hed by Deepak [16] who 
has found that the double ,scattering correction is within 40/0 up to 
angles of 20 0

• These results sUl?port earlier conclusions of Piaskowska
Fesenkova [17] and de Bary r 18 j that multiple scattering is negligible 
at small scattering angle under reasonably clear sky conditions. 
Clearly, single scattering theory has its usefulness for determining 
particle size distribution. It can certainly be retained as the basis 
for a particle size spectrometer either in the laboratory or in an 
airborne instrument. The use of laser light considerably extends the 
domain of applicability of such an instrument. The present approach 
is nevertheless being extended to include multiple scattering effects 
in order to cover all possible cases. 

The effect of the gases can be determined separately if the degree 
of polarization of the transmitted light at any single, near-forwa.rd 
scattering angle :1s also measured. Otherwise, it must be assumed to 
be known. 

The proposed method, then, consists in effecting an angular 
scan of the near-forward scattering region at a set of wavelengths. 
The scan must bE! performed with a resolution of approximately 
15 min, or less, and the forward cone half-width must not exceed 
approximately 8 deg. The first wavelength is accurately prescribed 
by Eq. (20). Data obtained with this wavelength can then be used to 
reconstruct the size distribution for radius values larger than approxi
mately 0.7 tJ.m from the closed form, analytical solution in Eq. (18). 
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This solution, it is emphasized, is not constrained by any analytical 
distribution model (as is usually done). No fitting of distribution 
parameters is performed. Ample illustrations have been provided 
here, and in our earlier work, of the working of this first step of the 
method, the uniqueness of the solution, and its stability with regard 
to experimental and numerical noise. 

The other wavelengths, which must be substantially different 
from the one used above for reasons of statistical independence of 
information content, are employed in the second step of the method. 
Here, Mie's theory is used, and the effects on the corresponding 
solution by particle sizes smaller than approximately 0.7 !J.m are 
implicitly considered to be negligible. With the size distribution 
previously determined, this solution will only depend on the complex 
refractive index. Accurate values of this quantity can be recovered 
using the nonlinear search routine we developed earlier. It may be 
noted that his routine is independent of the assumption of single 
scattering and can be coupled with the multiple scattering solution 
with equal success. 

The CPU times quoted for determining both size distribution 
and refractive index spectrum are considerably shorter than the 
time scales of the physical processes considered. Hence, the 
approach can be implemented for real-time operation to monitor the 
dynamical evolution of the particulates. The principle of the method 
proposed (called Angular Forward Scattering Method) has been 
retained for the system design of a particle size spectrometer and 
refractometer [12], and is being implemented at the Jet Propulsion 
Laboratory. Results of the corresponding experiments will be 
reported elsewhere. 
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SURFACE INsrABILITY OF srATIONARY AIR BUBBLES* 

Carl J. Remenyik*1< 

ABSTRACT 

This study was prompted by observations that pulsations of stationary 
bubbles accumulating in the fuel lines of the Saturn missile resulted in 
intense structural oscillations. 

High speed motion pictures were taken of bubbles oscillating with fixed 
mean positions in vertically oscillated containers. It was observed that 
the degree of instability of the bubble surface increases with the value of 
wa2 /v, where w = angular frequency, a = a characteristic linear bubble dimen
sion, and v = kinematic viscosity. 

EXPERIMENTAL APPARATIJS 

Experiments were performed on a magnetic Vibration Exciter, Model C2SH 
of the MB Manufacturing Company (Fig. 1). For the first five bubbles de
scribed below, a transparent, cubical plastic container (Fig. 2) was mounted 
on the vibration table. Its edges are 14 in., and the hole at the top is 12 
in. deep and 2 in. in diameter. The wall was constructed unusually thick to 
eliminate wall vibrations. When thinner walled containers were used, wall 
vibrations significantly affected the fluctuating pressure field in the liquid. 

The liquid in the container was glycerol, whose high viscosity prevented 
large bubbles from disintegrating into clusters of small bubbles. Large bub
bles were required for study of their surface motions using available equip
ment. 

The photographs shown here are frames of motion pictures taken with a 
HYCAM K20S4E high-speed camera. During filming, the container was between the 
camera and a flood lamp. The light beam was aligned with the axis of the cam
era lens, allowing the beam to pass through the container into the lens. A 
translucent plastic sheet placed before the flood lamp dispersed its light, 
producing an even photographic background. 

EXPERIMENrAL PROCEOORES 

Before each experiment, the camera was focused on a selected point inside 
the liquid to which the bubble was later steered. 

1< This project was supported in part by the Propulsion and Vehicle Engineer
ing Laboratory, George C. Marshall Space Flight Center, Huntsville, Ala., 
under Contract NAS 8-20152. 

** Department of Engineering Science and Mechanics, The University of Tennes
see, Knoxville, Tennessee 37916 
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After activating the vibration exciter, oscillation frequency was set 
as desired. To ensure that the subsequently injected bubble would not rise 
to the surface, the amplitude was set sufficiently high to drive any size 
bubble to the container bottom. Subsequently, a measured volume of air was 
injected with a hypodermic needle, and the amplitude readjusted until the 
bubble hovered within camera focus in a stationary mean position. 

Wherever the bubbles were released inside the container, they drifted 
to the wall. The final position was very near the container wall, but far 
enough away to prevent contact. The explanation for the tendency to move 
towards the wall probably is that two effects are combined in the process. 
The presence of the wall generates a "mirror image" of the bubble, i. e. , 
the flow field set up by the wall is nearly the same as if there were a bub
ble on the opposite side of the plane of the wall, pulsating in phase; Bjerlmes 
(1909) demonstrated that two submerged objects pulsating in phase exhibit mu
tual attraction. 

DESCRIPI'ION OF 1HE BUBBLES AND THEIR SURFACE MJI'IONS 

Bubbles shown in the illustrations were viewed by the camera from sev
eral directions. For the following discussions, a frontal view of the bubble 
is defined as one in which the region of the container's inside wall nearest 
to the bubble is behind the bubble as seen by the camera. In a right side 
view, the direction of sight is turned 90 degrees relative to the direction 
of the previous view, in such a way that the nearest point of the wall is to 
the right in the picture. A view from the opposite direction will be called 
a left side view, and the opposite of the frontal view, i.e., a view in which 
the bubble clings to the wall region nearest to the camera, will be a rear 
view. 

The motion picture frames shown in the sequences were selected so that 
elapsed time between them is 1/8 of the oscillation period. Thus, the first 
and ninth pictures in any sequence show the same motion phase. 

On one-half of the inside container surface, horizontal semi-circles were 
inscribed at 1/4 in. vertical intervals to serve as reference lines fixed in 
the container. Locations of bubbles shown in the figures were on or near an 
imaginary line connecting the middle points of these semi-circles. Thus, seg
ments of reference lines visible in the pictures were in the immediate vicinity 
of the bubbles. In most figures, cross hairs provide a reference system fixed 
in the camera lens. 

These bubbles hovered at fixed mean positions three to four inches above 
the container bottom; total depth of the glycerol column was between 10 and 11 
in. 

Some bubbles are surrounded by small specks. Most of these are approxi
mately neutrally buoyant, plastic filings or ion exchange beads which were add
ed to the glycerol to trace steady streaming (Remenyik 1970). Around those 
large bubbles which are distorted by large instabilities, part of the specks 
are small bubblets which have been shed by the large bubble. 

Observations indicate that instability of the bubble'S surface is controlled 
by the parameter St :: wa2/v, in which w represents the angular frequency, v the 
kinematic viscosity, and "a" a characteristic linear dimension associated with 
the top of the bubble's surface. A radius of curvature of the bubble top is such 
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a linear dimension, but its determination is frequently difficult or even im
possible. Since it was observed on several oblate bubbles that the bubble'S 
height had about the same magnitude as the radii of curvature at the top, the 
height was used as characteristic length "a" for such bubbles. 

The figures are arranged in order of increasing wa2/'IJ, and thus of in
creasing bubble siZe. 

1. The smallest bubble is shown in Fig. 3. It oscillated with a fre
quency of 50 cps and maintained a nearly spherical shape throughout the oscil
lation cycle. Its periodic, asyrranetric distortion was tmdoubtedly caused by 
strong shear stresses which resulted from the proximity of the wall. Its di
ameter was about 0.2 em., and WR.2/V .. 0.5, where R is half the diameter. The 
bubble is shown in a right side view. 

2. The flattened bubble in Fig. 4 had a height of about 0.47 em., oscil
lated with a frequency of 54 cps, and wa 2 /'IJ .. 10. Its entire surface was 
smooth at all times during the oscillation cycle. The bubble is shown in fron
tal view. 

3. Figure 5 shows a bubble of 1.46 em. approximate height, oscillating 
wi th 51 cps; wa 2 /'IJ .. SO. The intended view was frontal; however, the bubble 
drifted tmexpectedly to the left, and the view became intermediate between 
frontal and left lateral. As a consequence, the curving wall optically dis
torted the left side of the bubble more than the right side. The mottled back
grotmd of the bubble was accidentally caused by the wrong material having been 
placed in front of the flood lamp to diffuse its light.· 

In a frame-by-frame examination of the film, shot at 6000 frames per 
second, the following observations W('°,3 made. At about the time when the bub
ble top is in its highest position, a short, thin, faint white line appears 
along the upper edge of the silhouette (+Fig. Sf). This line lengthens rapid
ly (Fig. 5g and h); when it reaches the edge of the silhouette at the point of 
interception a small break appears in the smooth line of the edge. This break 
rtmS downward along the edge of the silhouette as the white line curves down
ward and continues to lengthen and eventually disappears (+Fig. Si, a and b). 

A second, much wider and brighter streak begins to develop above the 
first one when the top assumes its lowest position and the bubble its smallest 
size (Fig. Sa and i). It seems to be a wave interrupting the bubble surface. 
It grows in width and depth while the top accelerates upward (Fig. 5b and c), 
and diminishes tmtil it disappears when the top accelerates downward (Fig. Sd 
and e). One can conjecture that it is an instability feature that grows out 
of a periodic initial deformation of the surface caused by the shear field of 
the wall. Following its disappearance (between Fig. Se and f), the faint line 
reappears after an interval of about 0.09 of the oscillation period, i.e., in 
about 0.0018 seconds. Scant available evidence indicates that this interval 
decreases and the maximum amplitude of the wave increases with increasing 
wa2/v, and when this parameter surpasses a certain value, this feature no long
er disappears, but periodically varies in magnitude. Plotting locations of 
various points on the bubble against time indicates that the surface motion con
tains a significant second harmonic component. 

• In an effort to eliminate these shortcomings, the experiment was repeated; 
however, the new film was subsequently destroyed by yet another ac:cident. 
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4. If wa2/v is increased, the wave-like surface distortion eventually 
becomes irregular. This is shown in Fig. 6, where the bubble appears in 
rear view. 

The bubble's oscillation frequency was 53 cps, the average height 
was about 1.6 em., and wa2/v ~ 75. 

The protrusion at the bottom is a characteristic feature of this 
bubble, appearing and disappearing with each cycle, and developing to vary-
ing sizes, apparently randomly. It was observed, however, that an unusually 
large protrusion is always followed during the next cycle by one that is 
smaller than average. The protrusion in Fig. 6 is larger than average. Al
though it is not typical due to its large size, it was chosen for reproduction 
here because it exhibits exceptionally well certain details that are observable 
on nearly all protrusions. One such typical feature is the shape of the pro
trusion at the very begirming of its development. Photographs indicate that 
it is cylindrical and its tip terminates flat in a plane perpendicular to the 
cylinder axis (Fig. 6d). 

Large protrusions persist longer than smaller ones and, as a result, 
a small remnant of a large protrusion may still be present after the next pro
trusion had already appeared (Fig. 61 and m; the new protrusion is at right+). 
The bubble is surrounded by a cloud of small bubblets which had broken off from 
it, and these steadily stream as they oscillate and pulsate. Since the amount 
of light scattered by the bubblets varies with size, overall darkness of the 
photographs varies accordingly (Fig 6n). This offers a convenient method to 
determine the pulsation phase of the bubblets relative to that of the main bub
ble. This method leads to the conclusion that bubblets oscillate very nearly 
in phase with the main bubble, at least in its neighborhood, extending to a 
distance of one or two bubble diameters. Also, both main bubble and bubblets 
pulsate with a very large second harmonic component which in turn indicates 
that the fluctuating pressure field contains a very intense component having 
twice the fundamental frequency. 

5. The bubble in Fig. 7 is only slightly larger than the previous one, 
and motions of both are essentially equal. The view in Fig. 7 is from the 
right side, and outlines of the imler wall surface can be seen near the bubble 
and to the right. The photographs show the upper portion of the bubble surface. 
The surface of this bubble is distorted during each cycle by deep instability 
waves. The maximum distortion that developed during the cycle shown appears 
in Fig. 7g. This instability feature is possibly the same kind seen in Fig. 5, 
but extremely amplified. 

On some frames of the film, one can see that a bubblet is being pinch
ed off by a local instability. In a few other frames, bubblets coalesce with 
the large bubble. Apparently, this process establishes a different equilibrium 
bubblet concentration for each value of wa2/v. The bubb1ets drift steadily to 
and from the main bubble along looped paths (Remenyik 1970). 

The local states of strain in the liquid affect bubblet shape (compare, 
e.g., the shapes of bubblet indicated in Fig. 7h and i), and one may observe 
that the second harmonic is even more pronounced than before in the pulsations' 
of both main bubble and bubblets. 

6. When wa2/v was substantially increased, surface instability brought 
about the final state (Fig. 8). The bubble disintegrated completely into a 
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turbulent cluster of bubblets. The container used was of Plexiglas, had a 6.5 
in. inside diametel' and a 1/2 in. wall thickness, and is shown in Fig. 1 mount
ed on the vibration exciter. The liquid ,,,as methyl alcohol, 20 in. deep. 

The cluster is shown in rear view, and the flood lamp illuminated it 
from the side of the camera. It oscillated 126 times per second and it had an 
ap~roximate mean diameter of 5.6 em. If R is ~lf the cluster diameter, 
wR /v = 6.42 x lOs. 

A cloud of bubblets surrounding the cluster extended about a cluster
diameter beyond the apparent limits visible in Fig. 8. The less-densely popu
lated region of the cloud did not show up on film because of applied illumina
tion. 

Bubblets forming the cloud were being expelled at the bottom of the 
cluster in a steady but violently turbulent stream. They then circulated the 
cluster along paths resembling dipole flow, and plunged back into the cluster's 
top. 

Two intersecting straight lines visible in the photographs were 
threads. One was attached to the outside container surface, and the other was 
stationary a short distance in front of the first. 
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Fig. 1 Vibration exciter and circular container mounted on vibration table 
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Fig. 2 Cubical container 
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Fig. 4 Flattened bubble with smooth 

surface. wa2 jv ~ 10. 
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Fig. 5 Bubble with slight surface 
instability. wa2/v = 50. 
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Fig. 6 Partially disintegrated 
bubble with irregular 
surface instabilities. 
lJJa 2 /v =< 75. 
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Fig. 6 continued 
Partially disintegrated bubble with 
irregular surface instabilities and 
bubblet cloud of periodically vary
ing darkness. wa 2 jv ~ 75. 
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Fig. 7 Partially disintegrated 
bubble with very large 
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instabilities. wa 2/v is i 
some",hat larger than 75. 



Fig. 8 Cluster of bubblets. 
wR2/v ~ 6.42 x 10 5
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ON THE GROWTH AND COLLAPSE OF 

VAPOR BUBBLES AT LIQUID/LIQUID INTERFACES 

William E. Kastenberg 
Ivan Catton 

Energy and Kinetics Department 
School of Engineering and Applied Science 

University of California. Los Angeles 

I. INTRODUCTION 

The study of the thermal interaction initiated by quenching a hot 

liquid in a cooler one has recently received a great deal of attention. 

The subsequent behavior is important in the metal foundry industry, the 

liquid natural gas industry and the nuclear reactor industry. For the 

latter, the primary problem is the thermal interaction between molten 

fuel (usually uranium oxide) or stainless steel and the coolant (water or 

sodium). This thermal interaction is characterized by 1) high pressures 

and significant vapor production for the case of molten metal and water, 

2) low pressures and efficiencies for the ca~e of molten uranilUD and 

sodium, and 3)'significant surface enhancement or fragmentation of the 

hot material for both. 

The parametric models (computer simulation) of Wright et ELl. [1] and 

Caldarola [2] can be made to match the pressure/time histories for each 

case with a suitable adjustment of heat transfer coefficients. However, 

these adjustments are made with little physical basis. In addttion, Fauske 

[3] has proposed a criterion for which a full scale vapor explosion can be 

predicted. As mentioned above, surface enhancement or fragmentation occurs 

in any case. 

At the present time, the phenomena of fragmentation is not well under-

stood. Several theories have been proposed and are reviewed by Caldarola 
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and Kastenberg [4]. In that paper, a model, based upon bubble vapor growth 

and collapse, was presented to describe the fragmentation process. The 

basic hypothesis is that microjets formed during the collapse of vapor film 

at the liquid/liquid interface, contain enough kinetic energy to penetrate 

and fragment the molten material. 

The objective of this paper is to describe a set of experiments which 

are being conducted to study the fragmentation process. Results of these 

experiments, presented as a set of still photos, duplicated from high-speed 

motion picture films are discussed. Some preliminary conclusions, based 

upon these experiments are also given. 

\ .'. . . 
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II. DESCRIPTION OF EXPERIMENTS 

A series of experiments with simulant metals (tin, aluminum and lead) 

and water were run. Typically, the metals were heated above their melting 

point in a graphite crucible. They were then dropped through an argon 

atmosphere into water at various degrees of subcooling. High speed motion 

pictures (3,000-5,000 frames per second) were employed to reveal the thermal 

interaction. 

The general results can be summarized as follows. For water below 

70°C (30°C subcooled) a vapor film formed at the liquid/liquid interface. 

This was followed by apparent collapse and then violent mixing, distortion, 

high pressure and the spewing out of debris. Post mortem inspection showed 

that 90% of the molten material had formed a fibrous material. For water 

above 70°C, stable film boiling was observed, with little or no interaction. 

Post mortem inspection yielded large, smooth pieces of solid metal in the 

form of drops. 

To simulate the low conductivity oxide fuels, a series of experiments 

with molten salt were conducted. These experiments yielded extremely vio

lent interactions, indicating that some sort ,of chemical interaction had 

taken place. This is atypical of the U02/sodium experiments conducted at 

Argonne [5]. 
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III. EXPERIMENTAL RESULTS 

In Figure 1, a reproduction of one frame of a high speed motion picture 

is shown. In this case, molten tin, at 580 0 e is being dropped into 800 e 

water. The molten tin is completely encapsulated in vapor. This vapor film 

is stable, during the descent and when the metal comes to rest on the bottom 

container. The sample loses heat by radiation through the film and conduc-

tion through the catcher on the bottom. The post mortem inspection yielded 

three pieces of smooth debris of roughly equal mass. 

Figure 2 shows a strip taken sequentially from a run with the molten 

tin at 580 0 e and the water at 20°C (80 0 subcooled). As shown in the larger 

photos. an unstable vapor film is formed about the molten sample as it makes 

its descent. In frame number two of the second strip (smaller pictures) the 

film has partially collapsed. An unstable microjet has appeared. This is 

also shown in the following frame. By frame 4 of the second set, there is 

rapid production of vapor with a large pressure pulse. The mottled appearance 

of the vapor liquid interface indicates that the driving mechanism for the 

interaction is of a scale much smaller than the molten metal drop size. When 

the frames are viewed in motion. the surface appears to be pushed out by jets 

of vapor originating inside the interaction region. This could be postulated 

to be the result of collapsing bubbles and the resulting microjet of water 

penetrating the molten material and vapor production. 

An interesting phenomena is observed in the third column of Figure 2. 

The pressure wave created by the rapid expansion is reflected off the con-

tainer wall and interacts with the vapor zone. The effect of the reflected 

pressure wave is seen in the several frames following the first frame. The 

vapor zone is seen to decrease in size. The remainder of the sequence indi-

cates further vapor production. violent mixing and fragmentation. 

~" ' 

"," .. 
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This film strip is typical for metal/water reactions where the water 

is highly sub cooled. 

The next sequence. depicted in Figures 3 and 4, is for molten salt 

(NaCl) and water. Inspecting the strip, it is seen that an interaction 

takes place as soon as the sample hits the surface. A full scale vapor 

explosion takes place. with rapid mixing. high pressure. and water being 

forced up into the furnace area. Five distinct pressure pulses are observed 

when running the movie at reduced speed. These are difficult to visualize 

in the movie strip. Because of the violent nature"of this run, it was 

concluded that some chemical interaction may have taken place. 
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IV. CONCLUSIONS 

As a result of these experiments the following conclusions can be made. 

First, for the case of molten metals (tin, aluminum and lead) and subcooled 

water (below 70°C), collapse of the vapor film triggers the fragmentation 

process. Second, above 70°C, the stable vapor film inhibits fragmentation. 

Third, that while the vapor collapse triggers the event, the film speed is 

too slow to observe the action of the microjet on the surface. Fourth and 

finally, nothing can be concluded for the low conductivity case (i.e., 

extrapolation of U02) because of the apparent chemical interaction present in 

the salt system. This is not expected to occur for a molten U02 coolant, 

sodium or water interaction. 

· ••• c· . 
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Fig. 1. Molten tin at 5800 e into H20 at 800 e yielding stable 
film boiling. 
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Fig. 2. Molten tin at 5800 e into H20 at 20 0 e yielding unstable 
vapor film with subsequent fragmentation. 
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Fig. 3. Initial stages of mo1t~n salt into water yielding 
chemical reactions. 
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Fig. 4. Final stages of molten salt into water with chemical 
react:Lon. 
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ABSTRACT 

Astronaut William R. Pogue conducted some water droplet oscil
lation demonstrations on the SkYlab 4 mission in low earth orbit. In 
one of the demonstrations he used a soda straw to cause the droplet. 
attached to a flat plate. to oscillate. Marker pen ink was added to 
the droplet to enhance photography using an on-board TV camera. The 
drop. which was 2.54 cm high and 3.52 cm wide. was observed to have 
a natural oscillation frequency of 1.3 Hz. The demonstration was 
photographed with an on-board TV camera to record the oscillation 
of the droplet and dissipation. We were able to obtain excellent 
data on the change in amplitude with time from the observations. An 
analysis was performed using these photographic data and a theoretical 
model was developed for determining the oscillation frequency. wave
length. surface tension and damping characteristics of the water droplet 
when attached to a flat plate. The theoretical model and these obser
vation data are in good agreement. 

' ...... 
.. . ~ 
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I. INTRODUCTION 

Experiments performed in an orbiting spacecraft under low gravity 
conditions allow observations of phenomena which normally cannot be done 
in a terrestrial laboratory. An example of such an observation is that 
of the impact of two spheres of water which are not supported by either 
an aerodynamic force due to a flowing column of air or held in position 
with an encumbering supporting apparatus. Either of these two techniques 
tends to dampen the oscillations of the spheres of water and to mask 
other types of phenoma. The natural or free oscillations of water drops 
and other phonema are of special interest to the cloud physicist and other 
fluid mechanics researchers. 

Atmospheric microphysics deals with droplet and droplet-droplet 
interactions. Particularly. the mechanisms which occur during the 
creation of rain, such as the rebound of drops. coalescence of drops, 
splintering after impacts, oscillation breakup, electrical effects. etc., 
are all of special interest. To study these mechanisms, the Skylab 4 
crew was requested to do some fluid mechanics type science demonstrations 
during their long duration mission so that natural oscillations and other 
phenomena of water droplets could be observed. 

This paper presents results of a demonstration conducted by 
astronaut William R. Pogue to study water droplet oscillations in low 
earth orbit. In this demonstrat'lon he perturbed a droplet. attached to 
a flat surface, and caused it to oscillate. The droplet had been con
taminated with marker pen ink to enhance it for photography using an 
on-board TV camera. An analysis was performed using this photographic 
data and a theoretical model was developed to determine the oscillation 
frequency, wavelength, surface tension and damping characteristics of 
the water dropl et attached to a f1 at pl ate. A compari son between 
laboratory surface tension and experiment and the value calculated from 
this experimental observation was made with good agreement. 

II. EXPERIMENTAL ARRANGEMENTS 

The hardware used for this demonstration consisted of on-board 
medical type syringes, pieces of tape attached to drinking straws, a pad 
of ruled paper, marker pen writing ink, the teflon coated flat surface 
of the ED 52 "Web formation in zero gravity" spider cage, and the on
board TV camera. The water used in this demonstration was colored, to 
enhance the photography, by adding a small amount of the marker pen ink. 
During the demonstration a water droplet, attached to a flat surface. 
was caused to oscillate by motion of a soda straw. By observing the 
change in amplitude with time we were able to obtain the data required 
to verify the applicability of a proposed theoretical model. 

In the present investigation. the film. taken with the on-board 
TV camera. was studied and measurements of the characteristics of the 
drop oscillations were made using a Vanguard film analyzer. The amplitude 
and wavelength of the oscillations were determined directly from the film 
using appropriate scale factors. The frequency of oscillations was 
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determined by counting the number of frames that were observed during 
the time interval between the time that the water drop underwent 
deformation and returned to its original shape and then dividing this 
count number by the TV camera framing rate (30 frames/sec). 

Some selected frames of the various modes of the oscillating 
water droplet attached to the flat surface are presented in Figure 1. 
The numbers on the pictures in the figure show the sequence of TV 
camera frames taken in the Skylab demonstration. Picture number 1 
is at the moment when a drinking straw was inserted into the center 
of the water drop attached to the flat surface. Picture numbers 
4, 6, 9 and 12 show the soda straw being pulled out of the water drop, 
and picture number 13 shows the moment when the soda straw left the 
surface of the water drop. Picture number 14 shows the oscillation 
of the water drop at its maximum amplitude right after the soda straw 
completely left the surface of the drop while picture number 28 shows 
the drop at its minimum amplitude. Picture numbers 30. 33. 34, 35. 
36. 37 and 38 show how the water drop increased its amplitude again 
and picture number 40 shows the moment when the water drop just completed 
one cycle of oscillation and returned to its maximum amplitude. 

Analysis of these pictures frame by frame give us an opportunity 
to measure the frequency and wavelength of the oscillations and how 
these oscillations decay with time. 

III~ THEORETICAL MODEL 

A theoretical calculation for the oscillation of free floating 
liquid droplet was given by Lord Rayleigh (1879) almost a hundred 
years ago. Recently, Nelson and Gokhale (1972) reported an experi
mental study of small amplitude natural droplet oscillations with drop
let sizes from a few hundred micrometers to millimeters in a vertical 
wind tunnel study, and concluded that the agreement between experi
mental results and theoretical calculation given by Rayleigh was good. 
The present study concerns oscillations of a water droplet attached 
to a flat plate rather thanoscil1ations of a free floating droplet, and 
the size of the droplet is several cm rather than a hundred ~m. It 
is interesting to study the present experiment to see how well the 
data agrees with theoretical models. 

The theoretical model is based on the concept that fluid 
surfaces tend to be in equilibrium when the surface tension forces are 
balanced by the fluid pressure. If we assume that the amplitude of the 
oscillations is small compared to the wavelength, then the boundary 
conditions on the velocity potential $ for the rectangular coordinates 
can be written (Landau and Lifshitz, 1959) 

~) = 0 at z = 0 
ay2 

(3.1 ) 
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where p is the density of the fluid and a is the surface tension coef
ficient. If we consider a plane wave propagated along the x-axis~ then 
the solution of the system can be assumed to be in the form 

(3.2) 

where A is the amplitude, k is the wave number, and w is the circular 
frequency of the wave. The relation between k and w which is called the 
dispersion relation can be obtained by substituting Equation (3.2) into 
the boundary condition (3.1) 

(3.3) 

Since w = 2~f where f is the oscillation wave frequency in Hz, we have 

(3.4) 

It is important to point out that a plane wave solution as we 
have shown in equation (3.2) may not be true when the radius of curvature 
of the oscillating fluid is on the order of the wavelength of the 
oscil1at10ns. In this case, spherical harmonics rather than a plane 
wave solution is more suitable for describing the oscillation of the 
droplet. For the case of a spherical droplet oscillation of an incom
pressible fluid under the action of surface tension force, the boundary 
condition shown in equation (3.1) in rectangular coordinates can be 
written into spherical coordinated as follows: 

fi a{~ a[l a( ~) p at2 - R2 2 ar + ar Sin e ae Sin e ae 

+ Sin2 e :;tJ}:' 0 
at r = R 

If we prostulate a solution in the form of a spherical wave which 
satisfies the spherical harmonic function of the form: 

with t = 0, 1, 2, 0 0 0, and m. ±l. ±2. ±3, 0 0 0 ±t and using the 
spherical harmonic function 

(3.5) 

(3.6) 
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(3.7) 

where P: (cos e) is an associated Legendre function. Then knowing that 
the spherical harmonics Y1m satisfies 

1 a (. aY 1m) 1 (a
2
Y 1m) 

Sin ae S1n e as + $in2 e -;;;- + R. (R. + 1) Y 1m = 0 

we now have the relation 

2 _ ex R. (R.-1) (R.+2) w -
P R3 

(3.8) 

(3.9) 

Substituting the relations w= 21Tf. and R = d/2. where d is the diameter 
of the spherical droplet. equation (3.9) becomes 

f2 = 2 ex R. (R.-l) (R.+2) 
1T2 p dB 

which agrees with the formula obtained by Rayleigh (1879). 

(3.10) 

It is clear that the fundamental mode of the spherical harmonic 
oscillations is R.=2. In the present study. the wave mode of oscillation 
observed for the water droplet attached to the flat surface is a single 
mode whi ch is equi va 1 ent to R. = 2 for the spheri ca 1 harmoni c case. By 
making a comparison between equations (3.4) and (3.10) and substituting 
k = 21T/'A and 'A = 1Td/2 in equation (3.4). we find that the plane wave 
solution and the spherical harmonic solution are equivalent for R,= 2. 
For the case of multi-modes oscillations derivations between the plane 
wave solution and spherical harmonic solution becomes apparent. Table I 
shows the percentage deviation between these two solutions. The 
maximum deviation shown is 11% when R, = 4 with the deviation gradually 
decreasing as R. increases. 

In the present study. the contact angle between the water droplet 
and the flat surface is close to 1T/2. and there is no indication shown 
in the film obtained from Skylab that the contact line between the 
fluid and solid surface moved as the water droplet oscillated. This is 
the fundamental assumption we have made for boundary conditions in which 
we assume that the velocity potential vanishes on the contact line. If 
the contact line moves. a special justification is necessary (West. 
1911; Huh and Scriven. 1971). 

Physically. the surface tension ex is a measure of the work done 
per unit area to balance the pressure difference between the two sides 
of the fluid. This implies that ex increases when the pressure 
difference increases. and ex decreases when the fluid is contaminated 
with impurities. 
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Furthermore. let us now calculate the energy dissipation of droplet 
oscillations. In this case the mechanical energy. Emech ' includes both 
the kinetic and the potential energy. Thus. the energy dissipated per 
unit time in the droplet is 

(3.11 ) 

wbere aij is the viscous stress tensor which is defined 

'" (aVi aVj 2 avR.) avR. 
CJ ij = n aX

j 
+ ax:j - '3 6ij axR. + r;6ij axR. (3.12) 

and v is the velocity and V is the volume of the fluid. Here nand r; 
are called coefficients of first and second viscosity. respectively. 
Under the condition of an incompressible fluid (water droplet). equation 
(3. 11) becomes 

t...ch = - t"J G:; + ::~j dV (3.13) 

If we assume that during the oscillation of the liquid droplet the volume 
of the surface region of the rotational flow is small and that the 
velocity gradient is not large. then the existence of the region of 
rotational flow may be ignored. If the integration is taken over the 
whole volume of the fluid which moves as if it were an ideal fluid. then 
we have potential flow. 

(3.14) 

so that . - f (. a2w)2 Emech - -2n \axiaXj dV. (3.15) 

In the present analysis we are not interested in the instantaneous value 
of energy dissipation. but the mean value of energy dissipation with 
respect to time. By using the definition of mean value with respect to 
time for periodic motion 2w 

<1/1> = 21r ~(j) 1/I(wt) dt (3.16) 
o 
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and the wave form shown in equation (3.2). we have the mean value of 
mechanical energy 

<E h> = -Sn kit f<lIh dV mec 

Now. the mean value of mechanical energy is 

<Emech> = p f <vi> dV 

= p I < (~Wi)2 > dV 

whence 

(3.17) 

(3.1S) 

It is known that the energy of the wave decreases according to the low 

<E >a: e-2yt 
mech (3.19) 

since the energy is proportional to the square of the amplitude where the 
amplitude decreases with time as 

A = A e-yt 
o (3.20) 

Here Ao is the initial value of the amplitude and y is the damping rate 
of the wave. Thus. the damping rate obtained from equations (3.17) and 
(3.18) is 

= 2n k2 

p 

IV. RESULTS AND DISCUSSIONS 

(3.21) 

We were able to obtain measurements of the natural frequency of 
the oscillations of the droplet attached to a flat surface. and the size 
of the droplet from the film. As we have stated earlier. the phenomena 
of fluid-solid contact line is always a problem when contact line moves 
(Huh and Scriven. 1971). This is because the movement of fluid-solid 
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contact line violates the basic boundary conditions. Fortunately. after 
careful examination of Skylab films. we found that there is no indication 
that the contact line between the fluid and solid surface moved when the 
water droplet oscillated in the present case. The natural frequency of 
the oscillations as measured was 1.3 Hz for the contaminated water droplet 
(2.54 cm in height and 3.52 cm in width) attached to a flat surface. By 
using the observed natural frequency and wavelength. A (= 2~/k) = 6.1 cm. 
determined from the Skylab demonstration film. the surface tension of the 
droplet oscillation can be obtained from the following relation based on 
equation (3.4) or equation (3.10) with 1.=2 

_ f2 A 3 e 
a - 2~ 

(4.1) 

= 61 dynes/cm. 

This value is for the surface tension for water contaminated with marker 
pen ink while the surface tension for pure water at 200 C is 72 dynes/ 
cm. 

A laboratory measurement of the surface tension of a repro
duction of the Skylab water which is contaminated with marker pen ink 
was made at the NASA/Marshall Space Flight Center and gave a value of 
a = 60 dynes/em which is in good agreement with.Skylab demonstration 
value. 

Calculation of the dissipation rate of the droplet oscillation 
is rather straightforward by substituting the observed wave number in 
equation (3.21). It is 

y = 2.05 X 10-2 rad/sec 

= 3.26 x 10- 3 Hz 
when the viscosity coefficient of pure water at 200 C is used 
(n = 0.01 cm2/sec). This damping rate of the droplet oscillation 
corresponds to a dissipation time of 306 seconds. 

(4.2) 

Using the initial amplitude of the droplet oscillations as 
measured on the film and equation (3.20). we attempted to compare the 
actual damping rate curve with a theoretical curve. and our results 
are shown in the Figure 2. Although we were only able to observe 
the oscillations of the droplet for 22 seconds. there is good agree
ment between the actual dissipation rate and the theoretical curve. 

In the present analysis. the theoretical model is based on the 
assumption that the wave amplitude is small compared with the wave
length. The maximum amplitude of the droplet oscillation is 7% of the 
wavelength which substantiates the validity of the assumptions used in 
the development of the theoretical model. 
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TABLE 1 

COMPARISON OF THE PLANE WAVE SOLUTION AND 
SPHERICAL HARMONIC SOLUTION 

Mode CR.) Deviation* 

2 0.0 --
4 0.11 --
6 0.10 

1---

8 0.085 
i---

10 0.080 _. 
12 0.065 

15 0.055 _. 
20 0.043 --
30 0.030 --
50 0.018 --
80 0.012 _. 

100 0.009 

--
f2] - f2] 

*Deviation = plane wave spherical harmonic 
f2]plane wave 
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Fig. 1. Sky1ab 4 Sc~ence Demonstrations of Selected Sequences of the Oscillating 
Water Droplet Attached to the Flat Surfaces in a Low Gravity Environment. 
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LIQUID DROP BEHAVIOR IN WEIGHTLESSNESS FROM SKYLAB* 

Tommy C. Bannister 
NASA-Marshall Space Flight Center, Huntsville, Alabama 35812 

and 

Sidney V. Bourgeois 
Lockheed Missiles & Space Company, Inc , Huntsville, Alabama 35807 

ABSTRACT 

Several science demonstrations were performed on the Skylab IV mission 
on the behavior of typically .... 100 ml drops of a water and water! soap solution. 
Symmetric and antisymmetric oscillations were observed. Also, other phe
nomena were observed, including drop collisions, rotational instability and 
dampening of oscillations. A total in excess of two hours of data was obtained. 
The film shown was a seventeen minute composite of selected sequences. 

DISCUSSION 

A l7-minute film was shown which consisted of selected sequences from 
Skylab IV science demonstrations TV-lOl, Liquid Floating Zone, and TV-l07. 
Fluid Mechanics Series. Over two hours of TV video tape were obtained on 
these demonstrations by the Skylab IV crew of Ed Gibson, Bill Pogue and Gerald 
Carr. The film contained the following five segments: 

• Oscillation and damping of a free-floating, 100 cc spherical 
drop of marker ink-doped water which was initially per
turbed into an ellipsoid. 

• Same as preceding with a soap-water solution. 

• Impact and coalescence of two Tang-water globules each 
30 cc in size. 

• Rotation and breakup of a 100 cc water drop. 

• Rotational and longitudinal stability of Tang-water and 
soapy water cylindrical floating zones. 

Each of these sequences exhibit liquid dynamics in an environment of 10-4 

gEarth' 5 psi, 700 F, and 70% NZ-30% OZ, The film had sound and contained 
comments from the astrounauts as they performed the experiments in Skylab. 

* Film presented at International Colloquium On Drops and Bubbles, California 
Institute of Technology, Pasadena, California, 29 August 1974. 

\ 
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Demonstration TV-lOI, Liquid Floating Zone, was proposed by Dr. 
John Carruthers of Bell Research Laboratories, Murray Hill, New Jersey. 
It was performed and recorded on TV video by Science Pilot Ed Gibson. 
This demonstration simulates an important method of growing crystals and 
was done to define the stability of the liquid zone under a steady rotation rate 
of about 30 rpm as well as to obtain data on the instability modes and convec
tion patterns. This information is important in the utilization of this tech
nique for growing cl'ystals both on the ground and in space in the planned 
Space Laboratory. Specifically, the demonstration consisted of rotating water 
zones of varying lengths. The effect of viscosity on the zone was studied by 
using foams of water, soap solution and air for the zone. In addition the long
itudinal vibration characteristics of the floating zones were also investigated. 
Measurements from the flight film are being made for thirty-nine different 
rotation sequences of which twenty-four were stable and fifteen were unstable 
and broke. The measurements include the rotation rate versus time and the 
zone deformation versus time for each sequence. Data are also being taken 
from the film of several longitudinal vibration sequences. The preferred 
stable mode which was exhibited in the film sequence by the rotating zone was 
a nonsymmetric IICII shape, whereas previous Plateau experiments and theo
retical analyses lead to axisymmetric shapes (Ref. 1). Rayleigh's criteria 
for the maximum stable zone length (Ref. I) seems to be valid for the zones 
shown in the film sequence. 

Demonstration TV-I07, Fluid Mechanics Series, consisted of several 
fluid demonstrations grouped under one heading. The investigators were 
Ms. Barbara Facemire and Mr. O. Vaughan of MSFC; Dr. Sid Bourgeois of 
Lockheed Missiles and Space Company, Huntsville, Alabama; and Dr. T. Frost 
of the General Electric Company, Valley Forge, Pennsylvania. Both Science 
Pilot Ed Gibson and Pilot Pogue recorded this demonstration on TV video. 
It was essentially a series of tests to obtain data on fluid oscillation times, 
dampening times, rotational instability, wetting characteristics, internal 
vortices and fluid flow patterns in liquid drops under microgravity. Over 
two hours of excellent data were obtained. 

Quantitative measurements are in the process of being made from the 
film of these Skylab IV fluid mechanic science demonstrations. These include 
the frequency and damping of oscillations of different size liquid droplets, the 
approach velocity and frequency of oscillation for the droplet coalescence 
demonstrations and the deformation of drops during the rotation and breakup 
demonstration. Other demonstrations are not amenable to quantitative meas· 
urements and are being analyzed qualitatively. 

The drop oscillation sequences shown in the film indicate that Lord 
Rayleigh's classical. analysis (Ref. 1) of the problem accurately predicts the 
effect of surface tension on the vibration frequency of free-floating water 
drops. The damping factor for these oscillations on Skylab IV, however, do 
not seem to agree with Lamb's analysis (Ref. 2) of the viscous damping of 
free-floating, spherical drops undergoing ellipsoidal oscillations. This is 
probably due to the rather large exictations to which the drops were exposed. 
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The impact demonstrations indicate that a minimum velocity is neces· 
sary to overcome surface forces and affect a coalescence. There is also an 
indication that electrostatic effects may occur in some coalescences. Since 
quantitative data can not be obtained in many of the impact demonstrations, 
especially when impacts occur without coalescence, criteria for the coal
escence of liquids in low-g will be difficult to determine. 

The slow mixing of the liquids after impact and the dogbone shape of a 
droplet upon rotation demonstrate a small amount of internal circulation of 
a freely floating fluid in a low-gravity environment. This is an important 
observation which had not been predicted and could prove very significant for 
space processing applications. 

The injection of air into liquid globules demonstrates the effect of com
pressible air in damping oscillations. This technique also demonstrates the 
feasibility of forming hollow thin-walled liquid spheres. Several syringes of 
air were injected into a water globule forming a single sphere of air inside 
the liquid globule. 

The difficulty of handling freely floating liquids and the complexity of 
the fluid motion becomes clear while viewing these demonstrations and 
listening to the comments of the astronauts. In the post-flight debriefing 
the astronauts mentioned that a lot of time was necessary for learning how 
to handle fluids and recommended that non-wetting surfaces be used to 
handle fluids since on a wetting surface the fluid spreads, preventing the re
lease of free floating globules. They also noted that air currents had a sig
nificant effect on free-floating globules, making it difficult to position them. 
However, even with these difficulties the astronauts, after an initial learning 
period, became proficient at maneuvering the liquids and performing demon
strations. 

These demonstrations were used to fill extra time during the Skylab ' 
flights and were limited to on-board hardware. Data from the fluid mechanic 
demonstrations consisted only of the astronaut's voice transmission and tele
vision transmission. Even with these constraints, a great deal of basic and 
practical information was obtained on fluid motion and handling in low- g envi
ronments. This type of information will be beneficial to the design and develop
ment of many future space processing, cloud physics, and other related fluids 
handling programs. 
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